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Chapter 1

Introduction

The understanding and control of turbulence has tremendous significance
in a variety of fluid flows. Examples are readily found in astrophysical,
geophysical and environmental flow problems, in atmosphere weather pre-
dictions and aerospace applications, and in countless industrial innovations.
Apart from the scientific importance of basic turbulence phenomena, vari-
ous accompanying transport processes are often strongly influenced by tur-
bulence. One example that is considered in this thesis is scalar mixing.
A proper description of mixing can not be achieved without an understand-
ing of turbulence. Mixing involves mechanical stirring (dispersion) that is
purely convective and brings different fluid parcels into contact through the
action of stresses and strain. Diffusion processes further spread the tracer
on all scales present in a flow. These processes operate together and are
enhanced by turbulent flows that make them of large interest in engineering
and industrial applications.

The general purpose of this thesis is to study the influence of turbulence on
the efficiency of mixing, with the use of numerical simulations. One way to
influence the mixing efficiency is to change the turbulence intensity through
time- and space-dependent agitation. In practice, this can be achieved for
example by shaking or stirring of flows in some prescribed way, e.g., by
following a time-periodic protocol or by adopting a geometrically complex
blender architecture. In this thesis we will consider the situation of non-
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2 Chapter 1. Introduction

ideal, modulated turbulence, in which the flow is disturbed on various scales
of motion in physical space and the modulation may periodically vary in
time. We will quantify flow structuring, energy dynamics consequences of
such modulations and their influence on mixing characteristics.

Before presenting the content of this thesis, we will very briefly consider
some basic phenomenology of turbulence phenomena. Then the content of
each chapter will be presented and finally the general outline of this thesis
will be given.

Basic phenomenology of turbulence. What makes turbulence so diffi-
cult to understand? In a turbulent flow we observe for the most energetic
length-scales a strong momentum convection, a small momentum diffusion
and rapid variations of pressure and velocity in space and time. From the
mathematical point of view these processes are completely described by
the Navier–Stokes equations that govern the fluid flow. The incompressible
Navier–Stokes equations without external forces have the following form

∂v

∂t
+ (v · ∇)v = −∇p+ ν∇2v ; ∇ · v = 0, (1.1)

where v(x, t) is the velocity, p(x, t) is the pressure and ν is the kinematic
viscosity of a fluid. These equations form a system of nonlinear coupled
partial differential equations that represent the conservation principles of
momentum and mass. By providing suitable initial and boundary condi-
tions we make their possible solution fully deterministic in time and space.

The numerical solutions in a turbulent regime typically display a signif-
icant dependence on small-scale features. Given small differences in the
initial conditions of the numerical or physical experiments, either way, we
often end-up with totally different outcomes of turbulent flow already after
a short time. The initial differences will grow with time, which is a sig-
nature of deterministic chaos present in the nonlinearity embedded in the
Navier–Stokes equations. For example, if the initial uncertainties are below
measurement accuracy, we cannot control them explicitly and the system
ultimately appears unpredictable, due to experimentally non-repeatable
outcomes. This is encapsulated in the widely known butterfly effect that
expresses the sensitive dependence on initial conditions and makes for ex-
ample long-term weather predictions so difficult.
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One wonders whether it is possible at all to make a theoretical model to
describe the primary aspects of the behavior of turbulence. The intriguing
energy cascading process, suggested by Kolmogorov’s universality hypoth-
esis of independence between large and small scales [58], serves quite well
to provide at least an approximate model of energy dynamics in turbu-
lence. Moreover, the self-amplification mechanism between vorticity and
strain [100] suggests that turbulence possesses its own geometrical struc-
ture. This gives some hope to construct such a theory of turbulence. Ap-
plication of renormalization group analysis for basic turbulent flows [71] or
regularization-type models [47, 48] opens new mathematical and computa-
tional perspectives that may be used to explore more complex flows in the
future.

Computer Aided Understanding of turbulence. The sensitivity to
the initial condition and the vast extent of scales that must be taken into
account to properly represent the scales in a turbulent flow are very prob-
lematic issues. Fortunately, developments in two scientific disciplines, i.e.,
High-Performance Computing (HPC) and Computational Fluid Dynamics
(CFD) allow considering flows that so far were computationally inaccessi-
ble [82]. This provides a research approach that may give detailed access to
all flow properties in canonical turbulent flows such as homogeneous turbu-
lence, shear layers, boundary layers and complex interacting vortex systems
such as arise in the wake of an airplane.

By nondimensionalizing the Navier–Stokes equations one observes that flow
conditions may be labeled with a single dimensionless number. This ex-
presses the ratio of the inertial to the viscous forces and is known as the
Reynolds number

Re =
UL

ν
, (1.2)

where U is the characteristic velocity, L is the characteristic length, and ν
the kinematic viscosity introduced earlier. Large Reynolds numbers indi-
cate that inertial forces dominate the viscous forces. This corresponds to
situations in which the nonlinear convective effects are important. In such
regimes a broad range of scales will be present in the flow that must be
resolved in computations.
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The largest scales that will occur in a flow are of the size of the characteristic
length L that macroscopically describes the system for which we want to
find a solution, e.g., the length of a plane or size of a channel. The smallest
dynamically relevant scales are related to viscosity, hence they directly
depend on the Reynolds number. From dimensional analysis, the disparity
of these length scales in turbulent flow can be calculated by raising the
Reynolds number to the 3/4 power:

L/η ∼ Re3/4, (1.3)

where η is the Kolmogorov scale. The above ratio can be used to estimate
the number of grid points that is needed for accurate simulations of tur-
bulence. In fact, the required number of grid points is proportional to the
Reynolds number raised to the 9/4 power because of three-dimensionality.
Correspondingly, the amount of scales that needs to be resolved is enor-
mous, making extreme demands on the computational effort that is in-
volved.

The computational challenge represented by turbulent flow has stimulated
the progress in CFD methods. A popular division of current methods is
into three general groups: Direct Numerical Simulations (DNS), Large–
Eddy Simulations (LES) and Reynolds Averaged Navier–Stokes Simula-
tions (RANS). Simplifying, the first group of methods exactly resolves all
scales present in a flow, the second - divides them into two parts, that are
either resolved or modeled and the latter - solves the long-time averaged
equations for the mean flow. Both LES and RANS require the introduc-
tion of an explicit model that accounts for small-scale turbulence (LES), or
the Reynolds stresses (RANS). The energy transfer among eddies and sta-
tistical correlations between velocities play an important role in LES and
RANS descriptions. The DNS approach gives numerically exact solutions
of the Navier–Stokes equations at very high computational cost, while the
other two approaches are computationally less demanding and applicable
in industry to varying degree.

Turbulence requires a continuous supply of energy to overcome the vis-
cous damping that prevents it to exist by itself. For example, Earth’s
atmosphere is ultimately forced by radiation from the Sun that translates
into at least two sources of agitation, i.e., temperature gradients transport-
ing heat from hot to cold regions and wind shear that generates vortices.
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Studying turbulent flow requires attention for the dynamics described by
the Navier–Stokes equations in combination with the boundary (forcing)
conditions that supply energy to the system. Aspects such as amplitude,
spectral content and temporal variation of the forcing can have an impor-
tant effect on the resulting turbulent flow. This is the general area where
the work presented in this thesis starts to play a role.

Thesis content. This dissertation addresses fundamental aspects in tur-
bulence using Direct Numerical Simulations. The main emphasis is placed
on forcing methods. These can be used as instruments to better under-
stand the dynamics and structures present in the numerical solutions of
the Navier–Stokes equations. Likewise, such forcing schemes may serve as
modeling tools that account for specific boundary conditions, for example in
complex geometry flows such as flow over a forest, or through a metal foam.
This may help to understand turbulence and stimulate the construction of
approximate models that can accurately capture the primary dynamics of
turbulent flows for example in large-eddy simulations. We restricted our
study to the canonical problem of turbulent flow in basic geometry of a
cubic box with periodic boundary conditions. We studied in detail the con-
sequences of turbulence modulation introduced by forcing.

In brief, the main topics addressed in this thesis are:

Mixing in manipulated turbulence. For an idealized turbulent
flow various large-scale (stochastic and deterministic) forcing meth-
ods were invented. They basically supply the energy and sustain a
quasistationary state in turbulence. We will examine these meth-
ods concentrating on deterministic procedures in spectral space that
modulate the flow properties. While forcing is commonly applied to
large scales only, we focus on consequences when forcing is also ap-
plied in an extended range, i.e., modifying a broader set of scales.
We will study how such broadband agitation of smaller scales mod-
ulates the flow-transport properties. This is achieved by evaluating
passive scalar fields driven by modulated turbulence. We will start
with a spherically shaped initial tracer and see how it is dispersed
by turbulent flow using various configurations of broadband forcing.
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We will look at the instantaneous and cumulative effects evaluating
surface area, curvature and wrinkling of passive scalar concentration
at chosen iso-levels. We use these simulations primarily to illustrate
broadband forcing as a modelling tool that can be used to modulate
turbulence in a specific way.

Energy dynamics in broadband-forced turbulence. The broad-
band forcing directly introduces energy to explicitly specified smaller
scales. The injection of energy influences a broader range of scales
through nonlinear interactions present in the energy transfer function
and modulates the energy distribution between scales compared to
the reference Kolmogorov case. We will concentrate on the energy
transfer in the broadband context, studying the effect of energy in-
jection at various scales of motion in terms of the partitioned energy
transfer function between various triad contributions. We will inves-
tigate the magnitude of the contributions from various spatial scales
to the overall energy transfer.

Response maxima in periodically forced turbulence. Another
example of non-ideal turbulence considered here is turbulence mod-
ulated via time-periodic forcing. The numerical investigations per-
formed here were motivated by the results of theoretical studies of
the response of turbulence subject to periodically modulated stir-
ring [44]. We will look at the amplification of the response of turbu-
lence found for specific stirring frequencies of the order of the inverse
of the eddy-turnover time. The amplified response is observed for
various quantities like kinetic energy, energy-dissipation rate or mi-
croscale Taylor-Reynolds number. The obtained results are in agree-
ment with theoretical predictions and may serve as a link between
theory and experimental results obtained in periodic-modulated sys-
tems.

Turbulence modification by time-periodic forcing. The maxi-
mal response in amplitude found for the large-scale periodically forced
turbulence along with a characteristic phase-shift between forcing
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and analyzed quantities (e.g., total energy or energy-dissipation rate)
opens the question of the actual roots of this phenomenon. We will
perform a parameter study and numerically analyze the influence of
the amplitude of the forcing modulation, the periodic protocol and
the extent of agitated scales on the turbulence amplitude response.
This way the importance of the cascading effect can be directly inves-
tigated establishing mainly the large-scale character of the response
maxima. The variation of the amplitude modulation will be con-
fronted with theoretical predictions obtained for small values of the
amplitude.

Outline. The organization of the thesis is as follows. In Chapter 2 we
give an overview of different forcing methods used as basic research tools
in turbulence. We present and evaluate the numerical method used to
solve the Navier–Stokes equations and describe the extension of the large-
scale forcing to its broadband representation in spectral space along with
its spatial localization in physical space. We examine the effects of such
a forcing method application on flow transport properties concentrating
on the dispersion of passive scalar tracers. The energy dynamics of the
broadband-forced turbulence is investigated in Chapter 3. We present a
numerical study of the energy transfer terms and scale interactions in the
broadband forcing context. In Chapter 4 we investigate periodically mod-
ulated large-scale forced turbulence. We confirm the existence of response
maxima in periodically modulated turbulence using DNS. We present the
ensemble-averaging procedure that was used in this case. Based on these
investigations we further examine the application of periodic forcing in
Chapter 5. We study the response of turbulence to forcing with more com-
plex harmonic variations in time and vary the amplitude of forcing and the
extent of the agitated scales. In the last chapter concluding remarks with
an outlook for further research in this field are given.

The collected chapters are independent papers that appeared previously
in Journal of Turbulence, Physical Review E and Europhysics Letters with
the exception of Chapter 5 that was recently submitted to Computers &
Fluids.





Chapter 2

Mixing in manipulated turbulence†

A numerical investigation of turbulent flow, subject to deterministic broad-
band forcing, is presented. Explicit forcing procedures are included that repre-
sent the simultaneous agitation of a wide spectrum of length scales, including
both large scales as well as a band of much smaller scales. Such forcing induces
a multiscale modulation of turbulent flow that is motivated by flow through
complex objects and along irregular boundaries. Two types of forcing proce-
dures are investigated; with reference to the collection of forced modes these
procedures are classified as “constant energy” or “constant-energy input rate”.
It is found that a considerable modulation of the traditional energy cascading
can be introduced with a specific forcing strategy. In spectral space, forcing
yields strongly localized deviations from the common Kolmogorov scaling law,
directly associated with the explicitly forced scales. In addition, the accumu-
lated effect of forcing induces a significant nonlocal alteration of the kinetic
energy including the spectrum for the large scales. Consequently, a manipu-
lation of turbulent flow can be achieved over an extended range, well beyond
the directly forced scales. Compared to flow forced in the large scales only,
the energy in broadband-forced turbulence is found to be transferred more
effectively to smaller scales. The turbulent mixing of a passive scalar field
is also investigated, in order to quantify the physical-space modifications of
transport processes in multiscale forced turbulence. The surface area and
wrinkling of level sets of the scalar field are monitored as measures of the in-
fluence of explicit forcing on the local and global mixing efficiency. At small
Schmidt numbers, the values of surface area are mainly governed by the large
scale sweeping-effect of the flow while the wrinkling is influenced mainly by
the agitation of the smaller scales.

†“Mixing in manipulated turbulence” by A. K. Kuczaj and B. J. Geurts to appear
in Journal of Turbulence as a paper associated with the focus-issue Multi-scale Interac-

tions in Turbulent Flows Workshop held in Center for Nonlinear Studies at Los Alamos
National Laboratory, Santa Fe, New Mexico, USA (July 18-21, 2005) [60].
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2.1 Introduction

Various multiscale phenomena in turbulent flows arise from the passage of
fluid through and along geometrically complex objects placed inside the
flow domain. The corresponding perturbations of the flow arise simultane-
ously on a range of length scales and find their origin in the complexity of
the boundaries of these objects. A motivating example is the flow through
a porous region such as a metal foam depicted in Fig. 2.1. Many more exam-
ples can readily be mentioned, arising in different technological applications
or in numerous natural flows, including flow over forest canopies [31, 2, 11].

Fig. 2.1: A porous nickel foam contains various geometrical complexities on dif-
ferent length scales [65].

The purpose of this paper is to investigate the computational modeling of
flows through complex regions via the introduction of explicit forcing terms
in the Navier–Stokes equations. Consistent with the many shape details of
the obstructing objects, such forcing will need to represent the perturba-
tion of the flow on various length scales simultaneously. This distinguishes
the proposed computational modeling from more conventional forced tur-
bulence procedures. In the latter the flow agitation is restricted to a few
large scales only with the aim to observe the development of a natural in-
ertial range at smaller scales in the turbulent flow [103, 54]. Instead, in
this paper we allow the forcing of a collection of widely different modes.
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The consequences for transport and dispersion in such turbulent flows will
be studied both in spectral as well as in physical space. We will primarily
establish the degree by which the spectral properties of a turbulent flow
can be modified relative to the classical Kolmogorov scaling, and quan-
tify the efficiency with which embedded scalar fields can be mixed by the
modulated flow.

Complementary to the proposed explicit forcing approach, two alternative
formulations have been put forward in literature to capture the flow in and
around complex objects. These include the explicit boundary modeling
[106] as well as an approximation in terms of effective boundary conditions
and (surface) roughness parameters [46, 51]. The roughness parametriza-
tion has been introduced for situations in which the roughness length scales
are much smaller than the boundary layer thickness [99]. For geome-
tries that display both large- and small-scale contortions of the shape of
the object, compared to the boundary layer thickness, the surface-roughness
parametrization may not be sufficiently accurate [22]. Alternatively, in case
of explicit boundary modeling, no-slip conditions are imposed at all the in-
tricate shape details of the object. This computational approach can in
principle achieve full accuracy but is limited to cases of modest complexity
in view of the elaborate geometric modeling and the high computational
expenses that are required [14, 13].

A central motivation for the present paper is derived from the problem of
universality in turbulence, i.e., the degree of (in-)dependence of the large
and the small scales in turbulence on the type of forcing that drives the
flow. This problem was addressed earlier through numerical simulation,
e.g., in Refs. [43, 90, 6, 7]. Specifically, these simulations employed stochas-
tic power-law forcing methods and investigated the occurrence and prop-
erties of an inertial range of scales that separates the large and the small
scales. The scaling relations of velocity structure functions were found to
deviate from the well-known Kolmogorov prediction [8]. This is commonly
referred to as anomalous scaling that signals the occurrence of multifractal-
ity in turbulence [6]. This also suggests a degree of dependence of the veloc-
ity fluctuations on the particular stirring mechanism that is used, thereby
affecting to some extent all scales present in the flow. As a physical ex-
ample, flow through complex gasket structures may give rise to self-similar
turbulence spectra, which do not follow the well known Kolmogorov −5/3
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slope [58]. Such non-Kolmogorov turbulence was observed in flows over
tree canopies, and is reminiscent of a spectral shortcut feature that was
also observed experimentally [31]. In this paper we investigate the po-
tential of multiscale forcing to accurately characterize such dynamic flow
consequences of complex domain boundaries without the need to explicitly
account for their intricate geometrical shape. We consider the incompress-
ible Navier–Stokes equations with multiscale forcing working as a stirrer
whose dynamical effects are controlled by a distribution of simultaneously
perturbed length scales. To arrive at a multiscale modeling that is quan-
titatively linked to actual complex objects several steps need to be taken.
In this paper we address a first step in which we examine in some detail
the influence different forcing procedures have on the energy dynamics in
spectral space and the mixing characteristics in physical space. Special
attention is devoted to the mixing efficiency of a passive tracer by moni-
toring the surface area and wrinkling of level sets of these scalar fields [33].
Specifically we look at the instantaneous and accumulated effect on surface
area and wrinkling caused by broadband forcing.

Different divergence-free forcing procedures will be applied to directly per-
turb a large number of flow scales. The alterations of the flow dynamics
express themselves clearly in the kinetic energy. The transfer of energy to-
ward smaller scales is found to increase considerably, compared to the case
in which only large scales are forced. When a specific narrow band of scales
is agitated by the forcing, then the locally higher spectral energy is not
“compatible” with the molecular dissipation rate and an accelerated trans-
fer is observed toward smaller scales. This effect is found for both families
of forcing methods, i.e., constant energy and constant-energy input rate.
The kinetic energy spectrum is also modified nonlocally, in a range of scales
that are larger than the directly forced scales. Consequently the agitation
of a band of small length scale features can accumulate and also induce
significant alterations of the largest flow features, e.g., by contributing to
an increased backscatter.

The changes in the flow dynamics due to the application of broadband forc-
ing also has consequences for the turbulent transport properties of the flow.
This may be expressed in terms of the mixing efficiency of embedded passive
scalars. In particular, monitoring the surface area of level sets of the pas-
sive scalar allows to characterize changes in the large-scale sweeping of the
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flow, due to the forcing. Likewise, the more localized motions directly affect
the “wrinkling” of the passive scalar level sets. The dependence of these
measures for the mixing efficiency on forcing parameters can be used to
quantify the mixing efficiency arising from agitation of different bands of
flow structures with different forcing strengths. Specifically, we investigate
the dispersion of strongly localized initial scalar concentrations. The direct
numerical simulation of the forced turbulence shows that the maximal sur-
face area and wrinkling as well as the time at which such a maximum is
achieved can be controlled by variation of forcing parameters. The time-
integrated surface area and wrinkling are indicators of the accumulated
effect. The simulations show that at small Schmidt numbers, a higher
emphasis on small-scale flow agitation yields a significant increase in the
time-integrated total mixing of the flow.

The organization of this paper is as follows. In Sec. 2.2 the explicit forcing
strategies are introduced. Section 2.3 is devoted to the modulation of the
cascading process associated with the different forcing methods. The conse-
quences of forced turbulence for transport and dispersion in physical space
will be quantified in Sec. 2.4. Concluding remarks are collected in Sec. 2.5.
The simulation method, together with the code validation is presented in
a separate Appendix.

2.2 Simulation of forced turbulence

In this section we will first introduce the governing equations (subsection
2.2.1) and subsequently describe the explicit forcing strategies that are used
to drive the flow (subsection 2.2.2). Two types of deterministic forcing
strategies will be included: procedures that yield constant energy in the
collection of forced modes, and procedures that correspond to a constant-
energy input rate for these modes.

2.2.1 Governing equations

The dimensionless system of nonlinear partial differential equations that
governs the flow of a viscous incompressible fluid is given by





∂v(x, t)

∂t
+

(
v(x, t) · ∇

)
v(x, t) = −∇p(x, t) + ν∇2v(x, t) + f(x, t)

∇ · v(x, t) = 0,
(2.1)



14 Chapter 2. Mixing in manipulated turbulence

where v is the velocity field and p the pressure. The dimensionless viscosity
is the inverse of the computational Reynolds number Re, i.e., ν = 1/Re,
and f is the external forcing, which we will specify in subsection 2.2.2. This
system of equations may be rewritten in terms of the vorticity ω(x, t) =
∇× v(x, t). Making use of the identity

(
v(x, t) · ∇

)
v(x, t) = ω(x, t)× v(x, t) +

1

2
∇

(
|v(x, t)|2

)
, (2.2)

we may express Eq. (2.1) as

(
∂

∂t
− ν∇2

)
v(x, t) = w(x, t)−∇

(
p(x, t) +

1

2
|v(x, t)|2

)
+ f(x, t), (2.3)

where we introduced the nonlinear term w(x, t) = v(x, t)× ω(x, t).

The flow domain is assumed to be periodic with the same period in each of
the three coordinate directions. An efficient representation of the solution
in terms of Fourier modes can be adopted [17, 71, 110] in which the velocity
v(x, t) is expanded as

v(x, t) =
∑

k

u(k, t)eık·x, (2.4)

and the wave vector k (k = |k|) has components kα = 2πnα/Lb, nα = 0,
±1, ±2, . . . for α = 1, 2, 3. The dimensionless length of the periodic domain
is denoted by Lb and uα(k, t) is the Fourier coefficient corresponding to
the kth mode of vα(x, t). The equation governing the evolution of the
Fourier coefficients is given by
(
∂

∂t
+ νk2

)
u(k, t) = W(k, t)− ıkF

(
p(x, t) +

1

2
|v(x, t)|2,k

)
+ F(k, t),

(2.5)
where F(a(x, t),k) denotes the Fourier coefficient of the function a(x, t)
corresponding to wave vector k:

F(a(x, t),k) = A(k, t) if a(x, t) =
∑

k

A(k, t)eık·x. (2.6)

In addition, W(k, t) and F(k, t) denote the kth Fourier coefficient of the
nonlinearity w(x, t) and forcing f(x, t), respectively.
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In spectral space the pressure term may be eliminated from Eq. (2.5) if use
is made of the incompressibility condition. This is equivalent to the well-
known practice of solving a Poisson equation for the pressure in physical
space formulations [105]. If we multiply Eq. (2.5) by k, use the continuity
equation in spectral space, i.e., k ·u(k, t) = 0, and assume that the forcing
itself is divergence-free, so that k · F(k, t) = 0, the pressure term can be
written as

F
(
p(x, t) +

1

2
|v(x, t)|2,k

)
=

k ·W(k, t)

ık2
. (2.7)

The equation for the Fourier coefficients of the velocity field (2.5) may now
be written as

(
∂

∂t
+ νk2

)
u(k, t) = W(k, t)− k

(k ·W(k, t)

k2

)
+ F(k, t). (2.8)

This may be expressed in a more compact form in terms of the projection
operator D defined by

Dαβ = δαβ −
kαkβ

k2
. (2.9)

This operator restricts the solution to the space of divergence-free fields,
represented by Fourier coefficients u(k, t) that lie in the plane normal to
the wave vector k. We obtain the governing equation for the desired Fourier
coefficients as

(
∂

∂t
+ νk2

)
u(k, t) = DW(k, t) + F(k, t). (2.10)

A more detailed discussion of this spectral approach to the Navier–Stokes
equations is available in Ref. [71]. It forms the basis for the numerical
treatment that will be specified in the Appendix.

In various applications the dispersion of a passive scalar by a turbulent
flow is of central importance. Passive scalar transport may be used to
characterize the physical space consequences of multiscale forced turbu-
lence. The governing equation for the evolution of the scalar concentration
C(x, t) contains advection by the velocity field v(x, t) as well as diffusion.
In physical space this may be expressed as

∂C(x, t)

∂t
+

(
v(x, t) · ∇

)
C(x, t) = κ∇2C(x, t), (2.11)
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where κ is the non-dimensional molecular diffusivity of the scalar. Com-
pared to the dimensionless viscosity in Eq. (2.1) we adopt κ = ν/Sc where
the Schmidt number Sc characterizes the scalar diffusion. Roughly speak-
ing, if Sc > 1 then the scalar field displays a wider range of dynamically
important length scales, compared to the turbulent velocity field, while val-
ues Sc < 1 indicate a comparably smoother scalar field. The equation that
governs the development of the Fourier coefficients c(k, t) of the scalar field
C(x, t) can readily be found as
(
∂

∂t
+ κk2

)
c(k, t) = Z(k, t), where Z(k, t) = F

(
(v(x, t) · ∇)C(x, t),k

)
.

(2.12)
The changes in the turbulent transport properties of the flow due to the
multiscale forcing can be investigated by considering the evolution of the
scalar concentration at different Schmidt numbers. The structure of the
left-hand side of Eq. (2.12) is identical to the Navier–Stokes equations in
Eq. (2.10). This allows to adopt the same time-stepping method, as will be
specified in the Appendix.

To quantify the spectral-space effect of multiscale forcing, and also to be
able to concisely formulate the different forcing procedures in the next
subsection, we consider the kinetic energy. The equations that govern the
Fourier coefficients (2.10) can be written in index notation as

(
∂

∂t
+ νk2

)
uα(k, t) = Ψα(k, t) + Fα(k, t), (2.13)

where Ψα(k, t) = DαβWβ(k, t) is the nonlinear term. Multiplying this
equation by the complex conjugate u∗α(k, t) and summing over the three
coordinate directions, we obtain the kinetic energy equation

(
∂

∂t
+ 2νk2

)
E(k, t) = u∗α(k, t)Ψα(k, t) + u∗α(k, t)Fα(k, t), (2.14)

where E(k, t) = 1
2 |u(k, t)|2 is the kinetic energy in mode k. Introduc-

ing the notation for the rate of energy transfer T (k, t) = u∗α(k, t)Ψα(k, t),
the rate of energy injection by the forcing TF (k, t) = u∗α(k, t)Fα(k, t) and
the energy-dissipation rate ε(k, t) = 2νk2E(k, t), we can write Eq. (2.14)
as

∂E(k, t)

∂t
= −ε(k, t) + T (k, t) + TF (k, t). (2.15)
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This formulation clarifies that the rate of change of kinetic energy E(k, t)
is connected with dissipation, expressed by the viscous term ε(k, t), with
transfer to/from different wave numbers, expressed by T (k, t), and with
the forcing term TF (k, t).

The different contributions to the rate of change of the kinetic energy typi-
cally act in distinct wave-number regions. The forcing term TF (k, t) is non-
zero in the forced modes only. In this paper the collection of forced modes
will always contain a low wave-number band corresponding to large-scale
forcing of the flow. In addition, possible higher wave-number contributions
can be included in TF (k, t). In contrast, energy dissipation ε(k, t) is defined
in the entire spectral space, but it is dynamically important primarily for
the high wave-number range, i.e., acting on structures below the dissipation
length scale. Finally, the transfer term T (k, t) is basic to the development
of an energy cascade and is a dominant contribution for wave numbers
in an inertial range [71]. In the multiscale forcing cases, we will also in-
troduce forcing generally in the same region as where the transfer T (k, t)
is dynamically important. Hence, the effects of the multiscale forcing re-
late directly to the “competition” between the dynamics introduced by the
forcing procedure and the “natural” transfer of energy to other modes in
the spectrum.

In the formulation of forcing procedures and in the evaluation of the ki-
netic energy dynamics, one frequently adopts shell-averaging. The basic
operation consists of averaging over spherical shells of thickness 2π/Lb cen-
tered around the origin. The nth spherical shell is given by 2π

Lb
(n− 1/2) <

|k| ≤ 2π
Lb

(n+ 1/2) and will be denoted by Kn. Applying shell-averaging to
a function h(k, t) defined in spectral space we obtain

h(n, t) =
1

Pn

∑

Kn

h(k, t) ; Pn =
∑

Kn

1, (2.16)

where Pn is the number of modes in the nth shell. Applying the shell-
averaging [Eq. (2.16)] to the energy equation (2.15) we end up with

∂E(n, t)

∂t
= −ε(n, t) + T (n, t) + TF (n, t), (2.17)

which indicates that the interpretation of the various contributions to the
rate of change of the kinetic energy at mode k also applies to the shell-
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averaged formulation. In literature it is common to introduce a numerical
correction factor when averaging over shells. This is used to compensate for
the nonuniform distribution of modes within the discrete spherical shells
[30, 57]. We will follow the convention used in Refs. [30, 110, 108] when
presenting the energy spectra. This implies that we multiply h(n, t) by a
factor 4πn2, which is associated with the “expected number modes” within
the discrete shell. The definition of the energy spectrum that we will adopt

is given by En =
(
4πn2/Pn

) ∑
Kn
E(k, t). Finally, summing Eq. (2.15)

over all wave vectors k or, equivalently, Eq. (2.17) over all shells yields the
evolution equation for the total energy in the system:

dÊ(t)

dt
= −ε̂(t) + T̂F (t) ; ĥ(t) =

∑
n
Pnh(n, t) =

∑
k
h(k, t), (2.18)

where use was made of the fact that the contribution of the transfer term
T (k, t) is such that it only re-distributes energy over the various modes,
which implies that its sum over all wave numbers T̂ (t) = 0.

Next to spherical shells, it is convenient to introduce spherical wave-number
bands that consist of several adjacent shells. We denote the wave-number
band that consists of 2π

Lb
(m− 1/2) < |k| ≤ 2π

Lb
(p+ 1/2) by Km,p, wherem ≤ p.

The corresponding average over Km,p of a function h(k, t) is given by

h̃(m,p)(t) =
1

Pm,p

p∑

n=m

Pnh(n, t) =
1

Pm,p

∑

Km,p

h(k, t) ; Pm,p =

p∑

n=m

Pn.

(2.19)
To complete the computational model, we will next introduce the explicit
forcing strategies that will be investigated in this paper.

2.2.2 Explicit forcing procedures

Forced turbulence in a periodic box is one of the most basic numerically
simulated turbulent flows. It is achieved by applying large-scale forcing
to the Navier-Stokes equations. As a result, at sufficiently high Reynolds
number the well-known turbulent cascade develops in an inertial range of
scales, which are much smaller than the length scale of the forced modes
[58, 59, 71]. The statistical equilibrium that is reached is characterized by
a balance between the input of energy through the large-scale forcing and
the viscous dissipation at scales beyond the Kolmogorov dissipation scale.
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Various forcing procedures have been proposed in literature. Generally,
if the forcing is restricted to large scales only, the specific details of the pro-
cedure do not have such a large effect on the properties of the developing
inertial range at sufficiently finer scales. However, since we wish to extend
the forcing to act on a wide range of scales simultaneously, including parts of
an inertial sub-range, the differences between alternative forcing procedures
become more pronounced. Investigating these differences is an essential
step toward quantitative modeling of flow through complex gasket struc-
tures and forms the main focus of this paper. In this subsection, we will
recover the definition and some of the motivation for several characteristic
forcing procedures.
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Fig. 2.2: Definition of two-band forcing in spectral space (a) and localization of
forcing within a slab in physical space (b).

In multiscale forcing, the flow is agitated over a wide range of modes. To in-
vestigate the effects of such forcing we will focus on cases in which one
additional spherical band of scales is forced, next to the common forcing of
the large scales. We consider the general situation as depicted in Fig. 2.2(a).
The large scales are in the range k ≤ k0 and an additional band of small
scales is defined by k1 < k ≤ k2. The forcing method can also incorporate
cases in which only part of the domain is occupied by a complex obstruc-
tion, as sketched for the case of a slab in Fig. 2.2(b). In fact, by introducing
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an “indicator” function Θ(x, t) to locate the complex object within the flow
domain (Θ = 0 outside the region occupied by the object and 1 elsewhere),
the forcing can accommodate such spatial localization in a flexible manner.
In spectral space, the introduction of Θ(x, t) implies that the forcing term
in spectral space is represented by the convolution product of the actual
forcing F (k, t) and the Fourier transform of the indicator function. How-
ever, in the present paper such complications will not be included and we
will only consider forcing procedures applied in the entire physical domain.

Forcing procedures may be classified in different ways. We first distinguish
forcing schemes that keep the total energy in the collection of forced modes
identical to its value in the initial condition. This will be referred to as
class ‘A’ forcing procedures. Next, we identify forcing schemes that are
characterized by a constant-energy input rate, introduced via the collection
of forced modes. This group will be referred to as class ‘B’. In either class
of schemes, the flows develop around a well defined statistically stationary
state, but time-dependent variations in the total energy and in the energy-
input rate may occur.

Apart from a distinction concerning the way energy is introduced into
the flow, one may classify forcing schemes as “deterministic” or “stochas-
tic”. Stochastic forcing schemes may introduce an element of uncorrelated
randomness, e.g., by restricting the forcing to a random subset of the collec-
tion of forced modes every time the forcing is invoked. Several stochastic
forcing methods were explored numerically in Refs. [1, 6, 7, 79]. These
stochastic procedures were applied to a wide set of inertial-range scales
and give rise to a power-law spectrum. The emphasis in these studies was
put on the issue of universality in turbulent flows, i.e., the dependency of
large and small-scale turbulent fluctuations on the adopted forcing mecha-
nism. This issue is also at the heart of this paper. The primary question of
locality of the modulation of the energy spectrum can be addressed more
directly using deterministic schemes and in this paper we will restrict to
these procedures. We next introduce some characteristic forcing schemes
in either class ‘A’ or class ‘B’.

Class ‘A’: constant energy forcing

Various methods can be formulated, which are such that the kinetic energy
in the forced modes remains constant. The simplest possibility arises by
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requiring that uα(k, t) itself remains constant for all k in the collection
of forced modes. This was first proposed in Ref. [94] and implies for the
forcing in spectral space

A1 : Fα(k, t) = νk2uα(k, t)−Ψα(k, t). (2.20)

One readily verifies, using Eq. (2.13), that ∂tuα(k, t) = 0 and in particular
this implies that ∂tE(k, t) = 0 for each of the forced modes. Hence, also
the total kinetic energy contained in all the forced modes stays constant
in time. The energy-input rate corresponding to Eq. (2.20) is given by
TF (k, t) = ε(k, t) − T (k, t) for each of the forced modes. This input rate
may vary considerably in time, as the unsteady flow will lead to a strong
time-dependence of the energy transfer T for the forced modes.

The basic method [Eq. (2.20)] has motivated the formulation of a number of
extensions that relax the requirement that the Fourier coefficient is strictly
constant. In Ref. [20] the method was modified to require that |u(k, t)| =
const, i.e., equal to its initial value, for the forced modes. This allows for
the possibility that the phases of the Fourier coefficients may evolve in time.
The corresponding forcing is given by

Fα(k, t) =

(
νk2 −

T (k, t)

2E(k, t)

)
uα(k, t) = (ε(k, t)− T (k, t))

uα(k, t)

2E(k, t)
.

(2.21)
One may readily verify that this implies ∂tE(k, t) = 0 for the forced modes.
Forcing expressed in Eq. (2.20) or Eq. (2.21) was found to yield quite large
fluctuations in the energy-input rate [101].

Typically, the forced modes are ordered according to the wave-number shell
to which they belong. A shell-oriented simplification of Eq. (2.21) was
proposed [56, 57]:

Fα(k, t) =
(
ε(k, t)− T (k, t)

) uα(k, t)

2E(k, t)
. (2.22)

This forcing also preserves the total kinetic energy in the forced modes. The
three forcing procedures [Eqs. (2.20), (2.21) and (2.22)] are quite compa-
rable, both in terms of their fluid-physics motivation and in terms of their
turbulent flow predictions. Therefore, we will only present actual simulation
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results obtained with Eq. (2.20), which are quantitatively representative for
the other two forcing procedures in this group.

The forcing methods described so far preserve the kinetic energy that is
contained in the collection of forced modes. However, considerable vari-
ations in the total energy in the system can still arise. The reverse can
also be realized, i.e., forced turbulence in which the total kinetic energy
in the system is constant, but the energy in different modes may vary in
time. For this purpose, the forcing should not be formulated in terms of
quantities related to individual modes or shell-averaged values, but rather
contain averages over all modes [38, 67]. The case of forcing in a single
shell with P modes can readily be specified. Specifically, if we replace the
shell-average (·) in the amplitude factor in Eq. (2.22) by the average over

all modes (̂·) and use the fact that T̂ = 0, we obtain the forcing

A2 : Fα(k, t) =
ε̂(t)

P

uα(k, t)

2E(k, t)
. (2.23)

The A2-forcing implies an energy-input rate T̂F = ε̂(t) and thus by Eq. (2.18)
dÊ/dt = 0. This method corresponds exactly to the negative viscosity pro-
cedure used to maintain quasi-steady turbulence direct numerical simula-
tions results reported in Refs. [52, 107, 50, 54]. Extension of A2-forcing to
multiple shells can be realized in a number of ways. This will be described
in more detail momentarily. A2-forcing will be compared to A1-forcing in
the next section.

Class ‘B’: constant-energy input rate forcing

Next to forcing methods that can be associated with constant energy, one
may define forcing procedures in which the total energy input rate T̂F is
constant. We first present such forcing methods with reference to a single
band of forced modes. The way in which the energy input is distributed
over several bands will be specified afterwards.

A central example in the class of constant-energy input rate forcing methods
was presented in Ref. [36]. Changing ε̂(t) in Eq. (2.23) into the constant-
energy input rate εw, the corresponding forcing term may be written as

B1 : Fα(k, t) =
εw
P

uα(k, t)

2E(k, t)
. (2.24)
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The energy-input rate is found to be T̂F (t) = εw, as desired by construc-
tion. The total energy in the system is no longer constant but governed by
dÊ(t)/dt = −ε̂(t)+ εw, which implies that the statistically stationary state
that develops will show a dissipation rate that fluctuates about εw. This
type of forcing was also studied in Refs. [78, 19, 110]. Further extensions of
the basic forcing procedure [Eq. (2.24)] can be proposed in which an extra
factor k−q; q > 0 arises in the definition of Fα. Such an extra factor implies
that the forcing of higher wave-number shells can be made to correspond
to a specific shape (usually k−5/3 to more directly “impose” Kolmogorov
turbulence). These forcing procedures will not be considered in this paper;
for further details see Refs. [21, 80].

Similar to A-forcing methods, one may formulate related procedures that
are defined in terms of shell-averaged quantities. For example, analogous
to Eq. (2.22), we may replace E(k, t) in Eq. (2.24) by E(n, t) to define
the forcing of modes in the nth shell. This type of forcing was found to
yield basically the same results as those based on Eq. (2.24) and will not
be presented explicitly in the rest of this paper.

The final forcing procedure that we will include in this paper was proposed
recently in Ref. [70]. It was motivated as a model of flow through a frac-
tal gasket which functions as a multiscale stirrer. This particular forcing
may be associated with a constant-energy input rate for the entire sys-
tem. We modified the original forcing procedure slightly and considered
in particular

B2 : Fα(k, t) =
εwk

β

∑
k∈K

√
2E(k, t)kβ

eα(k, t), (2.25)

where K denotes the set of forced modes. In this formulation, the complex-
ity of the object is parameterized by the exponent β that is related to the
fractal dimension Df of the object through β = Df − 2. The vector e(k, t)
has the form:

e(k, t) =
u(k, t)

|u(k, t)|
+ ı

k× u(k, t)

|k||u(k, t)|
. (2.26)

that contains a part in the direction of u and a part that is perpendicu-
lar to u.
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Since u∗αeα = |u| =
√

2E(k, t) we find for the energy-input rate

TF (k, t) = εw
kβ

√
2E(k, t)

∑
k∈K k

β
√

2E(k, t)
. (2.27)

In contrast to B1-forcing in which the energy-input rate is constant in time
for each of the forced modes separately, this “fractal forcing” procedure
only implies a constant-energy input rate for the entire system. In fact,
after summation over all forced modes the total energy-input rate is found
to be equal to T̂F (t) = εw. Correspondingly, we find for the evolution of the
total kinetic energy dÊ/dt = −ε̂(t) + εw, i.e., identical as obtained before
for B1-forcing. In the original formulation in Ref. [70] the energy-input rate
εw was replaced by the total dissipation rate ε̂(t), which implies that Ê is
constant in time.

So far, the B1- and B2-forcing methods were defined with reference to
a single band of modes. This band was assumed to contain P modes and was
identified by K. The total energy-input rate εw was available to this band.
In case more bands are forced simultaneously, the way the energy-input
rate is divided over the individual bands, and among the modes within
each band, needs to be specified. For two forced bands Km1,p1

and Km2,p2

with Pm1,p1
and Pm2,p2

modes respectively, such a partitioning involves
two steps. First, a fraction εw,1 = aεw of the total energy-input rate is
“allocated” to the first band and the remainder εw,2 = (1− a)εw is used in
the forcing of the second band (0 ≤ a ≤ 1). Second, we divide the energy-
input rate that is available for each band equally over all modes in the
corresponding band. As an example, two-band B1-forcing may be defined
as

B1 : Fα(k, t) =
aεw
Pm1,p1

uα(k, t)

2E(k, t)
; k ≤ k0

=
(1− a)εw
Pm2,p2

uα(k, t)

2E(k, t)
; k1 < k ≤ k2 (2.28)

= 0 ; otherwise.

The two-band formulation of B2-forcing can be specified analogously, re-
placing εw by either aεw or (1 − a)εw and K by Km1,p1

or Km2,p2
, respec-

tively. Extending A2-forcing to more bands can be done in a similar way
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in which a fraction aε̂(t) is associated with the large-scale band and the re-
mainder with the second band. The specific choice of Pm1,p1

and Pm2,p2

above implies that the energy is equally distributed between all modes
within a forced band. We can go one step further and require the equal dis-
tribution of εw over the forced shells contained in the bands. This implies
changing Pm1,p1

and Pm2,p2
into the number of modes Pn for each forced

shell. Extension to more forced bands can be formulated analogously. For
completeness, the numerical method that is used in the reported simula-
tions, and its validation, are specified in the Appendix.

In the next section we turn to the effects that different multiscale forc-
ing procedures have on the developing turbulent flow. We will focus in
particular on the modifications that arise in the kinetic energy spectrum.

2.3 Modulated cascading by broadband forcing

The explicit forcing in different wave-number bands can have a strong effect
on the developing turbulent flow. We discuss the modifications of the energy
spectrum arising from “constant energy” (class ‘A’) or “constant-energy
input rate” (class ‘B’) procedures. The various forcing strategies will be
shown to qualitatively correspond to each other, provided the total dissi-
pation rate εw and the spectral energy distribution are commensurate for
the different class ‘A’ and ‘B’ forcing strategies. We will specify this inter-
relation in more detail momentarily. As point of reference, we will first turn
our attention to forcing of the large scales only. Subsequently, we consider
two-band forcing and investigate in particular the effects of variation of the
strength and location of the small-scales band on the developing flow.

In the sequel, we consider time-averaged properties of the developing tur-
bulent flow defined by

〈h〉t = lim
t→∞

1

t− t0

t∫

t0

h(τ)dτ ≈
1

T − t0

T∫

t0

h(τ)dτ, (2.29)

where T is sufficiently large. In all cases t0 = 5 in order to allow the
averaging-process to start from a properly developed quasistationary state.
The averaging is continued up to T = 25, which corresponds to approx-
imately 40 eddy-turnover times. This was found to provide an accurate
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representation of the long-time averages, leading to relative errors below
5%, measured in terms of the ratio of the standard deviation and the mean
signal. This procedure was applied to obtain the time-averaged kinetic
energy spectra as well, which are very effective for monitoring changes in
the kinetic energy dynamics due to the forcing.

2.3.1 Large-scale forcing

To create a point of reference, we first consider forced turbulence in which
energy is introduced to the system only in the first shell K1,1. We adopt
k0 = 3π referring to Fig. 2.2(a) and force all 18 modes inside this band.
The computational Reynolds number Re = 1061 and the size of the compu-
tational domain Lb = 1. The spatial resolution was taken to be 1283, which
provides ample resolution of these cases, similar to what was established in
the Appendix.

In order to be able to quantitatively compare results obtained with the
different forcing strategies, care should be taken of properly “assigning” a
level for the energy-dissipation rate and the spectral energy distribution.
For this purpose, we may consider simulations with the A2-method to be
central in the sense that the other three forcing strategies may be speci-
fied with reference to it. In fact, if we generate an initial condition with a
certain total kinetic energy, then A2-forcing yields an evolving flow that be-
comes statistically stationary after some time, while maintaining the same
level of total energy. The A2-forced simulation can be used to specify the
“corresponding” class-B forcing strategies. In fact, the constant dissipa-
tion rate εw in class ‘B’ forcing is taken equal to the time-average value
of the dissipation rate that is found from the A2-forced simulation, i.e.,
we adopt εw = 〈ε̂〉t. This procedure was adhered to in all cases presented
in this section. Finally, in the developed stages of either these A2- or B-
forced flows, any instantaneous solution may be used to arrive at a full
specification of the “corresponding” A1-forcing. The actual choice of this
instantaneous solution is arbitrary. However, when comparing simulations
based on A1-forcing that adopt different realizations of the turbulent flow
field, we observed that the statistical properties of all these A1-forced cases
were the same.

The evolution of the total kinetic energy Ê(t) and energy-dissipation rate ε̂(t)
is shown in Fig. 2.3. As initial condition for the A2- and B-forced simula-



2.3. Modulated cascading by broadband forcing 27

0 5 10 15 20 25
0.2

0.25

0.3

0.35

0.4

0.45

0.5

t

Ê
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Fig. 2.3: The evolution of the total kinetic energy Ê (a) and energy-dissipation
rate ε̂ (b) for the large-scale forcing: A1 (dashed), A2 (dotted), B1 (dash-dotted),
B2 (solid).

tions, we adopted the velocity field obtained at t = 0.5 from the decaying
homogeneous turbulence simulation discussed in the Appendix. To be able
to qualitatively compare with the A1-forced flow at a similar energetic level
we took as initial condition the solution from B1-forcing at t = 5. The to-
tal kinetic energy is seen to fluctuate around its long-time mean value (of
course, apart from A2-forcing). As can be seen, the system rapidly develops
into a statistically stationary state characterized by the input of energy, its
transfer to smaller scales and dissipation in the viscous range. In A1-forcing
the Fourier coefficients in the forced band are all kept constant, i.e., equal to
their initial values. The energy in the system fluctuates very significantly,
which was considered a disadvantage of this forcing in Ref. [30]. The energy
and dissipation levels in A1-forcing differ considerably from those obtained
with the other forcing strategies. To compare A2-forcing with B-forcing,
the energy-dissipation rate was taken as εw = 〈ε〉t

∼= 0.2. The total kinetic
energy for B1-forcing is seen to fluctuate around the constant value asso-
ciated with A2-forcing. A similar impression is observed when use is made
of the fractal B2-forcing in which the fractal dimension of the stirrer was
taken equal to Df = 2.6 [70], which corresponds to an exponent β = 3/5
in Eq. (2.25).
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In general, when applied to the largest scales only, all forcing procedures
mentioned in subsection 2.2.2 yield similar results. As a further example,
the tails of the time-averaged spectra were found to be virtually identical
to each other, which indicates that the properties of the smaller turbulent
length scales are not very strongly dependent on the details of the specific
forcing. This was also established by various other quantities that were
investigated. Specifically, the Taylor-Reynolds number Rλ for the simulated
cases was seen to fluctuate in the range between ≈ 50 up to ≈ 60 for all
methods. The time-averaged value of the skewness was also investigated
and found to be very close to 0.5. This indicates that a well developed
isotropic flow was attained [3].

2.3.2 Two-band forcing

In the simulations that adopt two-band forcing we consider situations in
which we introduce energy into the system in a band consisting of four
shells, next to the already described large-scale forcing in the first shell.
We first compare the different class ‘A’ and ‘B’ forcing strategies, within
this two-band setting. As second, forced band we consider K17,20. This
band corresponds to k1 = 33π and k2 = 41π in Fig. 2.2(a) and contains in
total 17284 different modes that are all explicitly forced. The comparison
of the different forcing strategies shows that the flow predictions are qual-
itatively comparable. Subsequently, we therefore focus on the B2-forcing
strategy and investigate the effects arising from changes in the strength or
the location of the second forced band.

Forcing of a second band implies that we need to additionally specify how
the energy input is distributed over the bands, the shells within the bands
and, finally, the modes within the shells. The specification of the A2-forcing
requires the fraction of the energy input that is allocated to the different
bands. We consider the case in which a = 1/5 in Eq. (2.28), which cor-
responds to equi-partitioning of the energy input over the five shells that
are forced. The forcing within the second band is further specified by as-
signing an equal energy-input rate to each of the four shells contained in
it. Finally, each of the modes in a particular shell n receives an equal share
of the energy input to that shell, taking the number Pn of modes in the
particular shell into account. To compare the ‘A’ with ‘B’ forcing strate-
gies we adopt the same method as above for specifying the parameter εw.
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Specifically, the total energy injection for the ‘B’ methods was given as
εw = 〈ε̂〉t ∼= 1, in terms of the time-average of the total dissipation rate in
the A2-forcing. Moreover, the same equi-partitioning of the energy input
as in A2-forcing was adopted. Finally, the A1-forcing is derived from the
field that was obtained at t = 5 with the B1-forcing. We verified that the
statistical properties of the A1-forced flow are insensitive to the particular
choice of initial field used to define this forcing method.
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Fig. 2.4: The evolution of the total kinetic energy Ê (a) and energy-dissipation
rate ε̂ (b) for two-band forcing: A1 (dashed), A2 (dotted), B1 (dash-dotted),
B2 (solid).

As may be noticed by comparing Fig. 2.3 with Fig. 2.4, the two-band forc-
ing leads to a strong increase in the total energy-dissipation rate, while
the total kinetic energy present in the flow is quite unaffected by the sec-
ond forced band. The increase in the dissipation rate is particularly strong
for A1-forcing. Hence, the high-k forcing changes mainly the distribution
of energy over the scales and not so much the actual energy content. By
changing the strength and location of the forcing, we have the possibility to
control, and to some extent manipulate the way the energy is distributed
and hence indirectly influence the large- and small-scale transport prop-
erties of the flow. We turn to this aspect next, by focusing explicitly on
the kinetic energy spectrum.
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Fig. 2.5: (a) Compensated energy spectrum for two-band forced turbulence
(k ≤ 3π and 33π < k ≤ 41π) with different methods: A1 (dashed), A2 (dot-
ted), B1 (dash-dotted), B2 (solid). (b) Compensated energy co-spectra E11, E22,
E33 for the A1- and B2-forcing methods. All three curves obtained with B2 are
found to collide (solid), while the three curves found with A1 differ at the large
scales (dashed).

The compensated kinetic energy spectra E(k) = 〈ε̂〉
−2/3
t k5/3 〈Ek〉t that

are obtained with the different two-band forcing methods are collected in
Fig. 2.5(a). The modifications in the spectrum, relative to the case of large-
scale forcing only, are localized primarily in the region close to the forced
band. All forcing methods are seen to yield qualitatively quite similar
results. Next to the expected modifications near the explicitly forced band,
we observe that the two-band forcing also affects a much wider set of larger
scale modes. In fact, a significant depletion of the kinetic energy in a range
of scales “ahead of” the forced region, is readily appreciated. This indicates
that the agitation of a small band of modes can induce large changes in
a rather wide part of the spectrum, which further characterizes the type of
turbulence-control that one may achieve with explicit forcing.

Some of the forcing methods induce a low level of anisotropy in the large-
scale turbulence fluctuations. In Fig. 2.5(b) we show the energy co-spectra
E11, E22, E33 for the A1 and B2 forcing methods. In case of perfect isotropy,
these co-spectra should coincide. The strong energy oscillations observed
earlier in conjunction with the A1 forcing method are seen to be also related
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Fig. 2.6: Compensated energy spectrum for two-band forced turbulence with
the B2-method and the same energy inputs εw,1 = εw,2 = 0.15 to the k ≤ 3π
band and various locations of the second band: 9π < k ≤ 17π, 17π < k ≤ 23π,
33π < k ≤ 41π, 49π < k ≤ 57π (dashed, dash-dotted, ⊲, ⋄). The spectrum
obtained with large-scale forcing at εw = 0.15 in k ≤ 3π band (solid).

to some anisotropy at the largest scales of motion. Such anisotropic energy
distributions at large scales may affect the small-scale statistics as was no-
ticed in various numerical experiments, e.g., Refs. [92, 8, 64]. Other forcing
methods (e.g., B2-forcing) were not found to induce significant anisotropy
at the largest scales.

We next turn to the second part of this section and consider the effects of
varying the spectral support and the strength of the second forced band.
The qualitative similarity of the different two-band forcing methods as
seen in Fig. 2.5 allows to concentrate on only one of the forcing meth-
ods. We adopt B2-forcing in the sequel. In Fig. 2.6 we illustrate the effect
of variation of the spectral support of the second band. Relative to the case
of large-scale forcing only, we observe that the tails of the spectra are quite
unaffected. However, the injection of energy in the second band is seen not
only to increase the energy in the forced scales but also to deplete the energy
in all the larger scales. Moreover, the “up-scale” effect of energy depletion
is more pronounced in case the second band is moved toward smaller scales.
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Fig. 2.7: (a) Compensated energy spectrum for two-band forced turbulence
with the B2-forcing method and energy-input rate εw,1 = 0.15 in k ≤ 3π
band for different strengths of forcing in the 33π < k ≤ 41π band: εw,2 =
0.075, 0.15, 0.30, 0.45, 0.60, 0.75, 0.90 (�, dotted, dashed, dash-dotted, ⊲, ⋄, ◦).
Large-scale forcing with εw = 0.15 in the k ≤ 3π band is denoted by the solid
line. (b) Corresponding time-averaged total kinetic energy with standard devia-
tions.

The control over the flow that is available with two-band forcing is examined
further by investigating the effects of varying the strength of the forcing in
the second band. We kept the energy input rate for the first k ≤ 3π
band equal to εw = 0.15 and varied the strength of forcing in the second
33π < k ≤ 41π band adopting εw = 0.075 . . . 0.90. The corresponding
compensated energy spectra from these simulations are shown in Fig. 2.7(a).
We observe that a higher energy-input rate in the second band leads to
a more pronounced peak in the spectrum that shifts to lower values of
kη with increasing εw of the second band. Simultaneously, the value of
E(k) decreases for the low-k modes with increasing εw. This forcing of
the second band allows to quite independently control the spectrum, at
roughly the same total energy content in the flow. In fact, variation of εw
of the second band by a factor of about 10 is seen to lead to a comparably
strong increase in the peak value of the spectrum while the total energy
level 〈Ê〉t is increased by only ≈ 15% as seen in Fig. 2.7(b).
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We also investigated properties of the simulated turbulence in case forcing is
applied to the high-k range only. In this way, we can separately appreciate
some of the backscatter of energy in a 3D turbulent flow. Such backscatter
is known to be particularly important in two dimensions, where the inverse
energy cascade mechanism is responsible for a significant transfer of energy
to the larger scales [9]. We found that forcing in the high-k band only,
corresponds to a strongly reduced turbulence intensity, e.g., expressed in a
significantly reduced Taylor Reynolds number. The fraction of the energy
that is backscattered appears quite independent of whether or not the large
scales are also explicitly forced. Studying the energy transfer (see, e.g.,
Ref. [71]), the range of scales that is primarily affected by the high-k forcing
was found insensitive to adding large scale forcing or not. More detailed
investigations are needed to reveal the properties of energy backscatter in
3D. This requires a separate study and we will not consider this issue further
in this paper.

In the next section we will examine how the changes in the flow properties
due to the two-band forcing in spectral space influence the physical space
mixing efficiency of a passive scalar.

2.4 Small and large scale mixing efficiency

The consequences of explicit broadband forcing not only express themselves
in modulated energy cascades. The mixing properties of the evolving tur-
bulent flow in physical space also depend significantly on the forcing that
is applied. In this section we quantify the mixing efficiency by monitoring
geometric properties of evolving level sets of an embedded passive scalar.
The numerical integration method that is used to determine these level set
properties is described in subsection 2.4.1. The ensemble-averaged simula-
tion results are discussed in subsection 2.4.2; we establish to what extent
the two-band forcing can be used to control the maximal rate of mixing
and the total accumulated degree of mixing.

2.4.1 Level set evaluation to quantify mixing

To illustrate and quantify the influence of two-band forcing on the turbu-
lent dispersion of a passive scalar field we analyze the evolution of basic
geometric properties of its level sets. As a result of the turbulent flow these
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level sets become highly distorted and dispersed across the flow domain.
Specifically, we concentrate on the surface area and the wrinkling of these
level sets. We adopt a specialized integration method to determine these
geometric properties, as developed in Ref. [33]. This method is based on the
Laplace transform and avoids the explicit construction and integration over
the complex and possibly fragmented scalar level sets. With this method
an accurate and efficient evaluation of the evolving mixing efficiency can be
achieved, which allows to quantify the increased complexity of the flow in
relation to the two-band forcing that is used.

Basic geometric properties of a level set S(a, t) = {x ∈ R | C(x, t) = a} of
the scalar C(x, t) may be evaluated by integrating a corresponding “density
function” g over this set. In fact, we have

Ig(a, t) =

∫

S(a,t)
dA g(x, t) =

∫

V
dx δ(C(x, t)− a)|∇C(x, t)|g(x, t), (2.30)

where the volume V encloses the level set S(a, t) [68]. Setting g(x, t) = 1,
g(x, t) = ∇ · n(x, t) or g(x, t) = |∇ · n(x, t)|, we can determine the global
surface area, curvature or wrinkling of S(a, t) respectively. Here n(x, t) =
∇C(x, t)/|∇C(x, t)| is a unit normal vector, locally perpendicular to the
level set. The divergence of this vector field is directly related to the local
curvature of the level set.

We will focus on the evolution of the surface area A and the wrinkling W .
The scalar C is scaled to be between 0 and 1; we will primarily consider
the level set a = 1/4. In particular we monitor

ϑA(a, t) =
IA(a, t)

IA(a, 0)
; ϑW (a, t) =

IW (a, t)

IW (a, 0)
. (2.31)

By determining ϑA and ϑW we may quantify the rate at which surface area
and wrinkling develop, the maximal values that are obtained and the time-
scale at which these are achieved. The corresponding cumulative effects are
given by

ζA(a, t) =

∫ t

0
ϑA(a, τ)dτ ; ζW (a, t) =

∫ t

0
ϑW (a, τ)dτ. (2.32)

These cumulative measures express the total surface area and wrinkling
that has developed in the course of time. In particular applications, e.g.,
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involving combustion in diffusion flames, the cumulative surface area and
wrinkling express the total “chemical processing capacity”. Here, we will
determine these cumulative effects in order to characterize the different
two-band forcing procedures.

To establish the influence of forcing on turbulent mixing properties we sim-
ulated the spreading of a passive tracer at Schmidt number Sc = 0.7.
The simulations were started from a spherical tracer distribution of radius
r = 3/16. The scalar concentration was set equal to 1 inside this sphere
and 0 outside. A localized Gaussian smoothing of this C-distribution was
applied near the edge of the initial sphere to avoid resolution problems.
The fractal forcing B2-procedure as defined in Eq. (2.25) was adopted.
We performed numerical simulations in which the energy-input rate εw and
the spectral support of this two-band forcing were varied.

As point of reference we adopted large-scale forcing in the K1,1 shell with an
energy-injection rate εw = 0.6. The resolution requirements were satisfac-
torily fulfilled: kmaxη ranges from 2.3 to 3.5 using a resolution in the range
1283−1923 grid cells. For the passive scalar these resolutions correspond to
kmaxηOC in the range from 3 to 4.5, where ηOC is the Obukhov-Corrsin scale
[104]. To study the influence of two-band B2-forcing we applied supplemen-
tary forcing either in a region situated near the largest scales of the flow,
i.e., K5,8 or further separated, i.e., K13,16. In case two bands are forced,
the energy-input rate for the K1,1 shell is εw,1 = 0.15, while the second
band is forced using εw,2 = 0.45. In this way the total energy level is
kept at comparable levels in the different cases. A qualitative impression of
the effect of these forcing procedures may be observed from the snapshots
shown in Fig. 2.8. The velocity and passive scalar display considerably
more small-scale features in case of two-band forcing, particularly in case
of high-k forcing. To quantify this qualitative impression we apply the level
set analysis discussed above. The results will be presented in the next sub-
section.

2.4.2 Surface area and wrinkling

In this subsection, we compare instantaneous and accumulated mixing
properties for large-scale forcing and different two-band forcing. The total
energy-input rate to the flow is kept constant at 0.6; a fraction εw,1 is allo-
cated to the first shell and εw,2 to the second band such that εw,1+εw,2 = 0.6
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(a)

(b)

(c)

Fig. 2.8: Snapshot of vertical velocity field iso-surfaces (left) and passive scalar
concentration (right) at t = 0.5 for large-scale forcing K1,1 with εw = 0.6 (a), or
with εw,1 = 0.15 in the first shell and complementary forcing εw,2 = 0.45 in K5,8

(b) or K13,16 (c). In the velocity field snapshots the red iso-surface corresponds to
u2 = 0.2 and the blue iso-surfaces to u2 = −0.2. The iso-surface at C = 0.25 is
shown for the passive scalar.
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Fig. 2.9: Evolution of decaying passive scalar growth parameters: a) surface area
ϑA, b) wrinkling ϑW , c) accumulated surface area ζA, d) accumulated wrinkling
ζW . Large-scale forcing K1,1 with εw = 0.60 (solid) and complementary two-band
forcing (εw,1 = 0.15 and εw,2 = 0.45) in K5,8 (dashed), K13,16 (dash-dotted).

and εw,1 is varied from 0.05 up to 0.6. The characterization of the mix-
ing efficiency was based on averaging 20 simulations, each starting from
an independent realization of the initial velocity field. The different initial
conditions were each separated by two eddy-turnover times.

The instantaneous and cumulative effects arising from both the large-scale
and the two-band forcing are shown in Fig. 2.9. The development of the
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instantaneous surface area and wrinkling is qualitatively similar in each
case. The concentrated initial tracer distribution is in the first stages pri-
marily dispersed by convective sweeping in the turbulent flow. As a result,
the level set corresponding to a = 1/4 becomes distorted and both ϑA and
ϑW show a rapid increase. However, since no source of scalar was included
in the computational model, molecular diffusion dominates the long-time
behavior and leads to ϑA and ϑW to decrease to zero as t→∞. In between,
ϑA and ϑW reach their maximum. The rapid initial growth is also clearly
expressed in Figs. 2.9(c) and (d). In addition, the cumulative measures ζA
and ζW show a clear saturation as t & 1.

We observe from Figs. 2.9(a) and (b) that forcing of the large scales only,
creates the highest growth rate of surface area and wrinkling. The sur-
face area reaches its maximum value both sooner and at a higher value
in this case. In the initial stages convective spreading of the tracer domi-
nates over the decay caused by molecular diffusion; hence in these stages
the agitation of the larger scales plays a crucial role in the evolution of the
surface area. The higher band forcing needs to compete more directly with
the viscous effects and does not induce very strong sweeping motions over
large distances. Correspondingly, high-k forcing is found less effective in
producing surface area. The more localized distortions of the scalar level
sets, as expressed by the development of the wrinkling, are less affected by
the competition with viscosity, as seen in Fig. 2.9(b).

The interpretation of the effectiveness of the mixing in relation to the spe-
cific forcing alters if we compare the accumulated values for surface area
and wrinkling. As may be appreciated from Figs. 2.9(c) and (d), a signifi-
cant enhancement of the accumulated long-time surface area and wrinkling
arises as a result of the explicit agitation of the smaller scales in the flow.
Evidently, forcing of the smaller scales does not yield a more intense mix-
ing, judging from the instantaneous values, but does yield an increase in
the total surface area and wrinkling, accumulated over time.

To measure the influence of variations in the strength of the forcing in
the high-k band, we focus on the K1,1 and K13,16 two-band forcing. In par-
ticular, we keep εw,1 + εw,2 = 0.6 and vary the values of εw,2. The effects
on the cumulative mixing efficiency are shown in Fig. 2.10(a). We observe
that an increase in εw,2 implies a slight decrease in the initial growth rate
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Fig. 2.10: (a) Evolution of the decaying passive scalar accumulated surface-
area parameter ζA for two-band forcing (K1,1 – K13,16) with different equi-
partitions of energy between bands: (0.60 – 0.00) (◦), (0.45 – 0.15) (solid), (0.30 –
0.30) (dashed), (0.15 – 0.45) (dot-dashed), (0.05 – 0.55) (dotted). (b) Total surface
area ζ⋆

A and wrinkling ζ⋆
W at t = 2 for different εw,2 in K13,16 (results normalized

by the total surface area and wrinkling for the large-scale forcing).

of instantaneous surface area, but an increase in the long-time cumulative
effect. The dependence of the long-time cumulative effect on εw,2 is clari-
fied in Fig. 2.10(b). These simulation results establish the degree of control
that may be achieved with two-band forcing and the feasibility of such com-
putational modeling. This approach may help to identify optimal stirring
procedures to which future research will be devoted.

2.5 Conclusions

Various deterministic forcing methods that perturb a turbulent flow in
a chosen range of length scales were examined. The presented modeling
framework incorporates the explicit forcing as an integral part. We have
shown that with a relatively simple forcing model basic properties of com-
plex flows can be captured. For example, an enhancement of the energy
dissipation by small-scale forcing was seen to produce so-called spectral
shortcut features, quite similar to what was observed experimentally in
flow over canopies [31] where the kinetic energy is immediately transferred



40 Chapter 2. Mixing in manipulated turbulence

to the smallest scales of the flow. Forcing methods agitating the flow in
a wide range of scales induce significant differences in the developing flow,
compared to the case obtained classically in which only the large scales are
forced. Various forcing methods were introduced and shown to produce
qualitatively similar results, provided the forcing parameters correspond to
turbulence at comparable total kinetic energies. We classified the methods
according to constant energy or constant-energy input rate and examined
these procedures by simulating forced turbulence with energy injected in
two different bands. The modulation of the turbulent flow was investigated
for various locations of the second high-k band in spectral space. It was
shown that the forcing in the second band induces nonlocal modulation of
the energy spectrum. This was further examined by simulations done with
different strength of forcing in the high-k band controlled by the energy-
injection rate.

We devoted special attention to a recently proposed multiscale forcing that
models a flow under the influence of an additional perturbation by a mul-
tiscale object [70]. We performed numerical simulations of the dispersion
of a passive scalar field in a turbulent flow that is driven by such forcing.
A level set integration method was adopted to quantify general character-
istics of mixing quality and efficiency. It was found that broadband forcing
causes additional production of smaller scales in the flow, which is directly
responsible for the localized enhancement of the wrinkling of the level set.
In contrast, the surface area of a level set of the tracer is found to be mainly
governed by convective sweeping by the larger scales in the flow and hence
it is governed to a greater extent by the energy-input rate allocated to the
small-k range. Future study will include the spatial localization of the forc-
ing. This can help to model flows that are more closely related to realistic
physical situation observed in experiments and applications.

Appendix: Computational method

In this appendix, we describe the computational method and paralleliza-
tion in some detail. First, we specify the time-stepping method, then we
sketch some aspects of the implementation of the pseudo-spectral method
and subsequently the validation of the method is described along with its
parallel performance.
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Time evolution

To simulate the spectral solution governed by Eqs. (2.10) and (2.12) we first
rewrite these equations in a more general form having in mind that the evo-
lution due to the diffusive terms can be computed exactly by introducing
integrating factors eνk2t and eκk2t, respectively [17]. In fact, Eqs. (2.10)
and (2.12) may be expressed as

∂U(k, t)

∂t
= G (U(k, t)) , (2.33)

where U =

[
u(k, t)eνk2t

c(k, t)eκk2t

]
; G =

[
(DW(k, t) + F(k, t)) eνk2t

Z(k, t)eκk2t

]
.

We use a constant time-step ∆t to obtain the solution at times tn = t0 +
n∆t. A four-stage, second-order, compact-storage Runge-Kutta method
was implemented. The advancement of the solution over a full time-step
requires four steps of the form

U(k, tn+γ) = U(k, tn) + γ∆t G(U(k, tn+ξ)). (2.34)

The intermediate solutions in the different stages can be found as follows.
In stage 1 we adopt (γ, ξ) = (1/4, 0), stage 2 requires (γ, ξ) = (1/3, 1/4),
stage 3 uses (γ, ξ) = (1/2, 1/3) and stage 4 completes the step with (γ, ξ) =
(1, 1/2) [34].

We consider turbulence in a cubic box of side Lb with periodic boundary
conditions and assume that the flow is statistically isotropic, which implies
that we require the same resolution in each coordinate direction. The di-
rect numerical simulations will employ a resolution of N3, where N is the
number of spectral space grid points that is used in each direction. This re-
stricts the set of wave numbers to nα = 0,±1,±2, . . . ,± (N/2− 1) ,−N/2.
The cutoff wave number is given by kmax = πN/Lb. In physical space this
corresponds to a uniform grid xα = jLb/N , where j = 0, 1, 2, ..., N − 1
in each coordinate direction. We use the pseudo-spectral discretization
method, i.e., the spatial derivative terms in the Navier–Stokes and pas-
sive scalar equations are computed via simple multiplications in the spec-
tral space. The nonlinear terms in the equations are evaluated in physical
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space to avoid the evaluation of several computationally intensive convo-
lution sums [17]. This procedure requires three steps. First, the Fourier
coefficients u(k, t) and c(k, t) are used to obtain the velocity and scalar
fields in the physical space. Subsequently, the velocity-velocity products
and the velocity-scalar products are determined in physical space and fi-
nally the associated Fourier coefficients of these products are obtained.

Aliasing error

The finite resolution may give rise to well-known aliasing errors. In fact,
the product of two Fourier series based on a resolution with N points gives
rise to more small-scale modes than can be supported by the grid. As a re-
sult, these contributions can appear on the N -point resolution as seemingly
lower wave-number modes. A detailed discussion of techniques allowing
the partial or full removal of the aliasing error can be found in Ref. [17]. To
eradicate the aliasing error we study in more detail (i) the random phase
shifts method and (ii) the method employing two-shifted grids with spheri-
cal truncation, closely following [88, 89]. In the first case, the aliasing error
is only partially removed. With additional truncation of the Fourier veloc-
ity field coefficients the remaining error can be reduced to O(∆t2). In the
method employing two-shifted grids and spherical truncation, the aliasing
error can be fully removed from the simulations. This specific approach
doubles the computational costs and memory requirements, compared to
the random shifts method. The well-known 3/2 method can be used as
well, by going to higher resolution and truncating the field. This can be
done with the lowest number of operations, but has higher memory re-
quirements. The aliasing error for higher-resolution runs affects mainly
the small-scale statistics. This is visualized in Fig. 2.11 where we have
shown the Taylor-Reynolds number and the longitudinal skewness for de-
caying turbulence simulations with initial Rλ = 100 and two resolutions
1283 and 1923. The partial dealiasing removes the main aliasing error and
with the additional truncation reduces it to the accuracy associated with
the adopted Runge-Kutta scheme. There is a small difference between
the full and partial removal of the aliasing error for the lower resolution of
1283, but this largely vanishes for the well-resolved 1923 case. The method
of two shifted grids and spherical truncation was used in actual simulations.
This removes the aliasing error completely, which was found to be essential,
especially to maintain the characteristics of the small turbulent scales.
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Fig. 2.11: Influence of aliasing error for resolution 1283 (a-b) and 1923 (c-d)
on Taylor-Reynolds number Rλ(t) and longitudinal skewness S1(t) at an initial
Rλ = 100 case. Simulations with aliasing error (dotted), partial dealiasing with-
out truncation (dashed), partial dealiasing with the truncation (dash-dotted), full
dealiasing by two grid shifts (solid). Results for the partial dealiasing with trun-
cation (dash-dotted) are almost identical to fully dealiased results (solid).

Data decomposition and fast Fourier transforms

The simulation software was implemented in Fortran 90 and parallelized
based on the framework given in Ref. [110] using the Message Passing In-
terface (MPI) [83]. Data are stored using the Hierarchical Data Format
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(HDF5) [42], which is a file format and library designed for scientific data
storage and handling. The choice of HDF5 was motivated by the flexible
data exchange between different platforms and its support of parallel I/O.
High performance computations were done at SARA Computing and Net-
working Services (Amsterdam) on Silicon Graphics (SGI) Altix 3700 and
Origin 3800 CC-NUMA systems (for more details see Ref. [91]). The critical
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Fig. 2.12: Prediction of total energy Ê, Taylor microscale λ, Taylor Reynolds
number Rλ and longitudinal skewness S1 at an initial Rλ = 50 (a) and Rλ = 100
(b) with a finite-volume [77] (solid) and the present pseudo-spectral (dotted) code.

performance factors in the parallel implementation of the pseudo-spectral
discretization method are the domain decomposition and the algorithm
for the three-dimensional Fast Fourier Transform (FFT). These two imple-
mentation decisions are essential since they determine almost all aspects of
the data exchange between domains and most of the floating point oper-
ations. It is important to obtain a data decomposition, which permits for
fast transfer of data between processors. To obtain parallel Fourier trans-
forms we adopted procedures from two libraries: SCSL [37] and FFTW
[32]. Moreover, since access to memory and the number and speed of avail-
able CPU-s may differ considerably among different computational plat-
forms, significant improvements in the processing time can be achieved
by platform-dependent optimization. The speedup of the parallel imple-
mentation was checked by simulating decaying turbulence at a resolution
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of 2563. A time interval 0 ≤ t ≤ 0.05 was considered. This case corre-
sponds to 28 time-steps with 5 data evaluation and reporting stages. In
a non-dedicated SGI Altix 3700 environment we obtained on 4, 8, 16, 32, 64
processors the following speedup numbers: 3.9, 7.5, 14, 26, 47, respectively.
The best performance results were obtained by a cache-unfriendly paral-
lelization along the second array dimension. This gives the opportunity of
minimal data exchange and reshuffling between processors and illustrates
that the speed of the processors overwhelms the abilities of direct access to
the memory. This was found to be the critical issue for the hardware that
was available.
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Fig. 2.13: Convergence of predictions for the Taylor-Reynolds number Rλ and
the skewness S at an initial Rλ = 50 (a) and Rλ = 100 (b) for different resolutions
N = 32 · 48 · 64 · 96 · 128 · 192 · 256 · 384 · 512.

Code validation

To validate the implementation of the pseudo-spectral method, decaying
homogeneous isotropic turbulence was simulated at two different Reynolds
numbers. The initial condition was taken from Ref. [77], which was gener-
ated on the basis of the Pao spectrum [86]. For further details we refer to
Ref. [76]. This flow was studied extensively using high-order finite-volume
discretization and explicit Runge-Kutta time-stepping. Special attention
was given to the degree of convergence that could be achieved using the
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finite volume approach. These data provide a clear point of reference with
which the present pseudo-spectral flow solver can be compared. A first,

Rλ/N
3 323 483 643 963 1283 1923 2563 3843 5123

50 0.56 0.83 1.11 1.67 2.22 3.34 4.45 6.67 8.90

100 0.20 0.29 0.39 0.59 0.79 1.18 1.57 2.36 3.15

Table 2.1: The value of kmaxη associated with different resolutions. The Kol-
mogorov scales are η = 5.87 · 10−3 and η = 2.07 · 10−3 for Rλ = 50 and Rλ = 100.

global assessment of the resolution that is achieved may be inferred by
evaluating the product of the cutoff wave number and the observed Kol-
mogorov dissipation length scale η = L(3R2

λ/20)−3/4 in terms of the Taylor-
Reynolds number Rλ computed for the initial condition (see Eq. (2.37) for
the definition) and integral length L = 1/2. In order to resolve all dy-
namically relevant length scales, including the dissipation length scale it is
required that kmaxη is sufficiently large. A commonly accepted criterion of
adequate spatial resolution is that kmaxη > 1. When the focus is on higher-
order statistics, it is preferred to use larger values (kmaxη > 3/2) [103, 30].
In Table 2.1 the values of kmaxη are presented for the two computational
Reynolds numbers considered Re = 1061 and Re = 4243 that correspond
to Rλ = 50 and Rλ = 100, respectively. We observe that in the first case a
resolution of at least 643 is required to achieve full resolution, while in the
second case the minimal required resolution moves up to 1923.

For validation of the code, the flow was simulated for more than two eddy-
turnover times and a number of quantities were monitored:

Total energy : Ê(t) =
∑

kE(k, t) (2.35)

Taylor microscale : λ(t) =
(
5Ê(t)/

∑
k k

2E(k, t)
)1/2

(2.36)

Taylor Reynolds : Rλ(t) = λ(t)u(t)/ν; u(t) =
√

2
3Ê(t) (2.37)

Longitudinal skewness : S1(t) = −
〈(∂v1(x,t)/∂x1)3〉

〈(∂v1(x,t)/∂x1)2〉3/2
(2.38)

The operator 〈·〉 in Eq. (2.38) refers to volume averaging.
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In Fig. 2.12, a comparison is made between simulation results obtained with
the pseudo-spectral method at N = 512, and with the high-order finite-
volume discretization method [77]. For each of the quantities an almost
perfect agreement may be observed. In Fig. 2.13 we assessed the conver-
gence of the predictions as function of the spatial resolution. In this figure
we replaced the longitudinal skewness S1 by the skewness

S(t) =
2

35

(
λ(t)

u(t)

)3 ∑
k
k2T (k, t). (2.39)

For homogeneous isotropic turbulence the value of S should be equal to 0.5
[3], which is quite well approximated in the simulations. This quantity is
quite sensitive to the spatial resolution and is therefore a good indicator
of appropriate spatial resolution. We observe that the different predictions
display a clearly distinguishable convergence toward the grid independent
solution. Specifically, results obtained for resolutions higher than 643 at
Rλ = 50 and 1923 at Rλ = 100 are quite indistinguishable, consistent with
the criterion that kmaxη > 1.
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Chapter 3

Energy dynamics in

broadband-forced turbulence†

Classically, large-scale forced turbulence is characterized by a transfer of en-
ergy from large to small scales via nonlinear interactions. We have investi-
gated the changes in this energy transfer process in broadband-forced turbu-
lence where an additional perturbation of flow at smaller scales is introduced.
The modulation of the energy dynamics via the introduction of forcing at
smaller scales occurs not only in the forced region but also in a broad range
of length scales outside the forced bands due to nonlocal triad interactions.
Broadband forcing changes the energy distribution and energy transfer func-
tion in a characteristic manner leading to a significant modulation of the
turbulence. We studied the changes in this transfer of energy when chang-
ing the strength and location of the small-scale forcing support. The energy
content in the larger scales was observed to decrease, while the energy trans-
port power for scales in between the large and small scale forcing regions was
enhanced. This was investigated further in terms of the detailed transfer func-
tion between the triad contributions and observing the long-time statistics of
the flow. The energy is transferred toward smaller scales not only by wave
numbers of similar size as in the case of large-scale forced turbulence, but by
a much wider extent of scales that can be externally controlled.

†“Nonlocal modulation of energy cascade in broadband-forced turbulence” by
A. K. Kuczaj, B. J. Geurts, and W. D. McComb appeared in Physical Review E, 74,
016306, 2006 [63].
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3.1 Introduction

The dynamics of kinetic energy plays a central role in turbulent flows.
The nonlinear term in the Navier–Stokes equations is responsible for the
transfer of energy between any three wave vectors that form a triad in
spectral space [71]. Along with the viscous and forcing terms this controls
the production, transfer, and dissipation of energy in the system. The
triadic interactions have been studied for decaying and forced turbulence
by many authors (for a review, see Ref. [113]). Throughout the years various
types of large-scale forcing methods [93, 56, 30, 21, 52, 36, 67, 85, 54] have
been proposed to sustain quasistationarity in numerical turbulence as an
idealized form of turbulent flow. The aim of such numerical experiments
was to investigate the basic concept of the Kolmogorov (K41) theory [58]
that proposes an inertial range in the kinetic energy spectrum and local
transfer of energy within this range. The turbulent kinetic energy is on
average transferred locally from larger to neighboring smaller scales.

The purpose of this paper is to numerically investigate the processes asso-
ciated with the flow of energy in a turbulent flow. Specifically, we consider
modulated turbulence in which the modifications involve the supplementary
forcing in a wide range of modes located in an inertial range of the flow. In
the literature, mainly turbulence with forcing restricted to the large scales
has been examined in detail [113]. The small scale behavior was found to
be energetically quite insensitive to the type of forcing and at sufficiently
high Reynolds numbers a well-developed inertial range was observed [111].
Against this background, we extend the use of forcing methods and in-
vestigate their application directly in the inertial range, thereby focusing
particularly on the competition between transfer and forcing. We quantify
the dominant alterations due to the broadband forcing in terms of changes
in the energy cascading processes. We pay attention to the energy transfer
function and consider changes that arise in the contributions from “local”,
“nonlocal”, and “distant” triadic interactions. Compared to traditional
large-scale forced turbulence, we observe a strengthening of the contribu-
tions of nonlocal interactions, leading to a modification of the inertial range
spectrum.

High-resolution direct numerical simulations of turbulence that measure
the influence of individual terms in the Navier–Stokes equations on the
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triadic interactions have been reported [27, 24, 28, 25, 26, 84, 102]. It was
found that the energetically dominant triadic interactions involve sets of
three modes in which the magnitude of the wave vector of one of the modes
differs considerably from the other two. This suggests that statistics of
smaller scales may be affected by larger scales. These dominant processes
are not in contradiction with the Kolmogorov theory because the energy
is mainly exchanged between the two modes of quite similar wave-vector
size [84]. Only a small net energy transfer toward larger wave numbers
arises that involves a detailed cancellation between many individual triad
transfers [102]. The spectral space dynamics is characterized by a multitude
of separate transfer processes among various modes. These contributions
can be collected in pairs with opposite sign and almost the same magnitude.
In total, this leads to a large number of “near-cancellations” and hence
only a comparably small net effect remains that constitutes the well-known
“downward cascading” toward higher wave numbers in spectral space. This
was confirmed with the use of helical mode decomposition in Ref. [102].

The dynamics of actual turbulent flows seen in nature is usually charac-
terized by an enormous number of interacting scales, often perturbed by
geometrically complex boundaries and influenced by additional forces such
as rotation and buoyancy. This can lead to inhomogeneity and anisotropy,
which are not covered directly in the classical view of the Kolmogorov
energy cascade and may express themselves in nonlocal interactions of var-
ious particular scales of motion. The complexity of such systems motivated
us to study in more detail forcing methods that simultaneously perturb
a prescribed range of scales [60]. Such “broadband” agitation of various
scales of motion is observed experimentally in turbulent drag reduction by
fiber suspension [72, 73], flows through porous media [11], and over tree
canopies [31]. In these cases the energy is transferred abruptly to small
scales when the flow reaches an obstruction. Various other types of flows
also exhibit turbulent motions that coexist at different scales [87].

To explore the possibilities of a broader application of forcing methods
in turbulence modeling and concurrently examine the energy dynamics in
flows that do not directly follow the classical Kolmogorov −5/3 scaling we
employ numerical simulations of broadband-forced turbulence. The forcing
studied in this paper represents a continual addition/removal of energy from
a broad range of scales in the system, thereby providing the possibility of
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Fig. 3.1: Broadband forcing in spectral space. Large-scale forcing k ≤ k0 with
an additional high-k forced region k1 < k ≤ k2.

altering the characteristic −5/3 slope in the kinetic energy spectrum as
predicted by the K41 theory. Specifically, as indicated in Fig. 3.1, we
apply the forcing to two regions. The large-scale forcing k ≤ k0 classically
agitates the largest scales in a flow while the additional band k1 < k ≤ k2 is
located in a region of the inertial regime, to allow a direct competition with
the nonlinear transfer term. For inertial-range scales broadband forcing
introduces explicit energy injection next to the transfer term. We varied
the spectral support and strength of the high-k band to investigate the
modulation of the turbulence that develops. This distinguishes it from the
classical forcing of large scales only.

In this paper we compute changes in the energy distribution associated
with the broadband forcing and observe a characteristic alteration in the
spectral energy transfer compared to the classical Kolmogorov cascading.
This alteration expresses itself by additional local minima and maxima in
the transfer function. It is well known that in cases with large-scale forcing
only, negative values are found for the transfer at the smallest wave numbers
indicating the energy injection at these scales. The positive values for the
transfer that arise for all other wave numbers indicates the energy cascading
process to smaller scales. In our case of broadband forcing in the inertial
range, additional negative regions appear in the transfer function. These
coincide with the additional local injection of energy. Such a negative region
is bordered by nearby additional maxima in the transfer. These characterize
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the associated increased energy transfer to scales just larger or just smaller
than the broadband-forced region.

Forcing applied to different spatial scales simultaneously allows a nonlo-
cal modulation of the energy distribution compared to the reference Kol-
mogorov case. To quantify the alterations in the energy transfer we use a
decomposition of the velocity field closely following Ref. [28] and investi-
gate the magnitude of the contributions from various spatial scales to the
overall energy transfer.

The main finding of this study pertains to the role of broadband inertial
range forcing in modifying the natural energy cascading process. This is
understood explicitly in terms of changes in the detailed nonlocal energy
transfer. In addition, we illustrate and quantify the mechanism of enhance-
ment of the total energy transfer to smaller scales arising from broadband
forcing and the depletion of the energy content in the large scales. Agitation
of certain high wave numbers can affect well separated low wave-number
components in a flow. These findings may be relevant for problems that
involve the control of turbulent flow in complex geometries in which var-
ious scales of motions are simultaneously agitated, e.g., in compact heat
exchangers [11]. Further applications of such broadband forcing may be
connected with the observed modulations of transport properties in physi-
cal space leading to an enhanced scalar dispersion rate [60].

The organization of this paper is as follows. The mathematical formulation
of the problem is given in Sec. 3.2 where the computational method and the
energy transfer terms are also described. The energy spectra of broadband-
forced turbulence and the modulation of the energy transfer are investigated
in Sec. 3.3. In Sec. 3.4 we present a more detailed view of the energy transfer
processes by computing partitioned energy transfer function over various
spatial scales. The paper closes with a summary in Sec. 3.5.

3.2 Computational flow model

3.2.1 Equations of motion

The incompressible Navier–Stokes equations in spectral (Fourier) represen-
tation can be written as

(
∂t + νk2

)
uα(k, t) = Ψα(k, t) + Fα(k, t), (3.1)
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where uα(k, t) is the velocity field coefficient at wave vector k (k = |k|) and
time t [71]. The nondimensional kinematic viscosity ν is the inverse of the
computational Reynolds number (Re = 1/ν). The nonlinear term reads

Ψα(k, t) = Mαβγ

∑

p+q=k

uβ(p, t)uγ(q, t), (3.2)

and the forcing term Fα(k, t) is specified in Sec. 3.2.2. The tensor Mαβγ in
Eq. (3.2) accounts for the pressure and incompressibility effects:

Mαβγ =
1

2ı

(
kβDαγ + kγDαβ

)
, (3.3)

in which
Dαβ = δαβ − kαkβ/k

2. (3.4)

Taking the inner product of (3.1) and u∗α(k, t), where the asterisk denotes
the complex conjugate, we obtain the energy equation

(
∂t + 2νk2

)
E(k, t) = T (k, t) + TF (k, t). (3.5)

The spectral energy density is denoted by E(k, t) = 1
2u

∗
α(k, t)uα(k, t). The

rate of energy exchanged at wave vector k with all other modes in the
system is characterized by the energy transfer function

T (k, t) = u∗α(k, t)Ψα(k, t). (3.6)

The rate of energy provided by the forcing term is

TF (k, t) = u∗α(k, t)Fα(k, t), (3.7)

and the energy dissipation rate present in Eq. (3.5) reads

ε(k, t) = 2νk2E(k, t). (3.8)

The three terms T (k, t), TF (k, t) and ε(k, t) represent the energy dynamics
in the system that each typically act in distinct wave-number regions. The
forcing term TF (k, t) is nonzero in the forced modes only. In this paper
the collection of forced modes will always contain a low wave-number band
corresponding to large-scale forcing of the flow. In addition, higher wave-
number contributions will be included in TF (k, t). In contrast, the energy
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dissipation rate ε(k, t) is defined in the entire spectral space, but it is dy-
namically important primarily for the high wave-number range. Finally,
the transfer term T (k, t) is basic to the development of an energy cascade
and is a dominant contribution for wave-numbers in an inertial range [71].

The change of the total energy Ê in the system is connected with its viscous
dissipation and the total effect of the forcing. In fact, introducing

Ê(t) =
∑

k
E(k, t), (3.9)

we find

∂tÊ(t) = T̂F (t)− ε̂(t), (3.10)

where ε̂(t) =
∑

k ε(k, t) and T̂F (t) =
∑

k TF (k, t). We used the fact that the

total energy transfer T̂ (t) =
∑

k T (k, t) = 0. The injection of energy occurs
only in the forced region. This keeps the whole system in a quasistationary
state. Normally, the forced region is restricted to the largest scales in a flow
represented by the smallest wave numbers [30, 85]. The energy introduced
in the large scales is transferred to smaller scales and dissipated primarily
in very localized flow features of viscous length scales. By the introduction
of an additional source of energy in the inertial range we will study the
perturbation of the energy cascading process by the forcing.

3.2.2 Forcing method

Forcing is achieved by applying an additional driving Fα(k, t) to the velocity
field in Fourier space, cf. Eq. (3.1). Conventionally, the turbulent cascade
develops as a statistical equilibrium is reached, characterized by the balance
between the input of kinetic energy through the forcing and its removal
through viscous dissipation. In literature [93, 56, 30, 21, 52, 36, 67, 85, 54],
we may distinguish several numerical approaches to forced turbulence that
all refer to the agitation of the largest scales of motion. Here, we modify
such classical forcing procedures by allowing for the simultaneous agitation
of a broader range of intermediate-k modes as depicted in Fig. 3.1.

We study two ranges of forcing: the classical large-scale forcing (k ≤ k0)
and small-scale forcing localized in the spectral region where the transfer
of energy T (k, t) is important (k1 < k ≤ k2). By narrowing or widening
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the width of the forced bands, along with a change in their location in
spectral space we can control several aspects of the energy-dynamics. The
strength of forcing is controlled by the amount of energy introduced to
various regions in spectral space.

We expect the small-scale forcing band to influence the interscale energy
transfer process not only between scales of similar size but at a wider spec-
trum of scales. This may be understood globally as follows. The process
of energy cascading is mainly interpreted via the resulting local transfer of
energy in spectral space [84]. However, this total energy transfer results
from many nonlocal contributions and these may be directly altered by the
additional small-scale forcing. Correspondingly an influence on the overall
energy cascading process may occur over an extended wave-number range.
We quantify this effect by evaluating the nonlinear interactions among the
various modes while they are being perturbed by the broadband forcing.

In this paper we adopt the recently proposed fractal forcing [70], which
involves a power-law dependence of Fα on the wave number:

Fα(k, t) = ε̃w(k)
kβeα(k, t)

∑
k∈K k

β
√

2E(k, t)
, (3.11)

where the coefficient β = Df − 2 is connected with the fractal dimension
Df of the stirrer and ε̃w(k) is the energy input rate at mode k. The fractal
forcing is based on a simple argument of drag enhancement associated with
flow passing through complex “porous” regions, e.g., a metal foam or the
canopy of a tree. The complexity of such obstructing objects may be cap-
tured to some extent in terms of their fractal dimension Df as elaborated
in literature (see, e.g., Refs. [31, 70] and references therein). In Ref. [60]
the effect of various deterministic forcing methods was compared and a
qualitative independence of the particular type of forcing was observed,
both in case of large-scale forcing only and when broad band forcing was
adopted. In this paper we selected the fractal forcing as a characteristic
forcing procedure for further investigation of the nonlocal alterations in the
energy transfer. The fractal dimension Df is taken equal to 2.6, close to the
experimental value found for fractal grids reported in Ref. [69]. Variation
of Df by about 20% was considered and found to yield only small effects
on the spectrum.
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The set of forced modes K is composed of bands Km,p (m ≤ p) which consist
of p−m+1 adjacent spherical shells Sn = 2π

Lb
(n−1/2) < |k| ≤ 2π

Lb
(n+1/2):

m ≤ n ≤ p, in terms of the size of the computational domain denoted by
Lb. In the simulations we always force the first shell S1 and a single high-k
band Km,p, if not stated otherwise. The classical large-scale forcing of the
first shell S1 has a constant energy injection rate εw,1 in Eq. (3.11) while
Km,p has a constant strength εw,2 and a support in spectral space controlled
by m and p:

ε̃w(k) =





εw,1 if k ∈ S1,

εw,2 if k ∈ Km,p,

0 otherwise.

(3.12)

The vector e in Eq. (3.11) is given by [70]

e(k, t) =
u(k, t)

|u(k, t)|
+ ı

k× u(k, t)

|k||u(k, t)|
. (3.13)

This vector consists of two parts, either parallel or perpendicular to the vec-
tor u(k, t). In this forcing procedure, we have control over the energy input
rate, the range of forced modes and the effective geometrical complexity of
the stirrer represented by the fractal dimension.

The summation over all forced modes of u∗α(k, t)Fα(k, t) yields a total en-
ergy input rate given by

T̂F (t) =
∑

k
TF (k, t) =

∑
k
u∗α(k, t)Fα(k, t) = εw, (3.14)

where εw = εw,1 + εw,2. The energy input leads to a quasistationary state
described by the energy equation

∂tÊ(t) = εw − ε̂(t). (3.15)

This characterizes the energy dynamics in the system at the most global
level. We observe that this forcing implies a constant energy injection rate
that results in a fluctuating total energy Ê and a fluctuating total energy
dissipation rate with mean εw.

3.2.3 Energy transfer

A detailed investigation of the energy transfer in large-scale forced tur-
bulence [84] shows that the dominant triadic interactions occur between
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wave vectors of quite different lengths. Hence large-scale forcing may be
directly involved in the dynamics of much smaller scales [108]. The inter-
actions are roughly classified as “local” when the sizes of all wave vectors
in a triad are similar, “nonlocal” when the scale separation is about a fac-
tor 10–15 and “distant” when the separation is much larger [12]. It was
shown that the transfer of energy reaches maximum values for triads with
two wave vectors of similar size and one with quite different length [84].
Although, the interactions between triads can be seen mainly as nonlocal,
the dominant net energy transfer is local, i.e., occurring between similar
scales [111, 112, 114]. The interactions produce forward and backward en-
ergy transfer that combined result in a small net forward energy transfer
because of the detailed balance between contributions that virtually cancel
each other [102]. The forward cascade in the inertial range was found to
be dominated by local and nonlocal interactions, while the distant interac-
tions do not significantly transfer energy [12]. All these findings concern
the classical turbulence forced at the largest scales.

Against this background, we ask what the turbulence response will be to
a broadband perturbation of the energy transfer processes? In recent lit-
erature a somewhat related study was reported in Ref. [95]. Decaying tur-
bulence that starts from an initial condition with an energetically strongly
enhanced small-scale band of modes was studied. The presence of the extra
small-scale band was found to reduce the intensity of the developing tur-
bulence by enhancing the nonlocal energy cascade directly towards smaller
scales. This removes the kinetic energy more efficiently. The energy feeding
mechanisms and energy transfer also attract much attention in transitional
and turbulent flows with an active control [81]. The modulation induced by
the broadband forcing has its consequences not only in the spectral space
dynamics of a flow but also in its physical space transport properties [60].

To analyze the response of turbulence to the additional broadband pertur-
bation in more detail we apply previously developed methods used in the
examination of energy transfer in large-scale forced turbulence [28]. Refer-
ring to Fig. 3.2, the energy transfer between a wave vector k = (k1, k2, k3)
and all pairs of wave vectors p and q = k− p with p, q chosen in some
prescribed regions P and Q will be investigated. Such a decomposition al-
lows measuring the contribution of separate scales to the transfer function
T (k, t). The precise specification requires a few steps that are presented
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Fig. 3.2: Schematic triadic interaction that occurs between wave vector k in shell
Sk and wave vectors p, q taken from regions P and Q of spectral space that each
consist of four shells with central wave numbers kp and kq.

next. First, we define the truncated velocity field as

u(P,Q)
α (k, t) =

{
uα(k, t) if k ∈ P ork ∈ Q,
0 otherwise.

(3.16)

Based on this truncated velocity field we may compute the energy transfer
involving the wave vector k and all wave vectors p and q:

TPQ(k, t) =





T̃PP(k, t) if P = Q,

1

2

[
T̃PQ(k, t)− T̃PP(k, t)

−T̃QQ(k, t)
]

if P 6= Q,

(3.17)

where
T̃PQ(k, t) = u∗α(k, t)Ψ(P,Q)

α (k, t). (3.18)

The nonlinear term Ψ
(P,Q)
α (k, t) is defined by the convolution of the trun-

cated fields:

Ψ(P,Q)
α (k, t) = Mαβγ

∑

p+q=k

u
(P,Q)
β (p, t)u(P,Q)

γ (q, t), (3.19)
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where the sum is over all triads with p ∈ P and q ∈ Q such that p+q = k.

For a statistically isotropic, homogeneous turbulence it is convenient to
average over spherical shells in wave-vector space. In addition, in view of
the considerable computational effort involved in computing all interactions
between the very large number of scales present in the flow, we introduced a
slight coarse graining in terms of the regions P and Q as shown in Fig. 3.2.
Specifically, it was found adequate to group together contributions from
four adjacent shells. Other more coarse “groupings” of wave numbers have
been considered in the literature with the aim of extracting the dominant
interaction processes at a reasonable computational effort. As an example
a “logarithmic” grouping was adopted in Ref. [28] combining contributions
from bands with a width of 2k. In this paper we will look at the interactions
of four shells P at distance kp (cf. Fig. 3.2) with four shells Q at distance
kq that contribute to the nonlinear energy transfer to shell Sk characterized
by the wave number k.

In terms of the transfer function TPQ(k, t) we may now define the required
spectral transfer functions. The energy transfer term (3.17) gives the ex-
change of energy by the triad (k,p,q) where the latter two wave vectors
are specified by the sets P and Q and the triangle constraint. Summing
over all modes k in shell Sk we obtain the exact exchange of energy in the
kth shell between k, kp, and kq:

Tpq(k, kp, kq, t) =
∑

k∈Sk

TPQ(k, t). (3.20)

We refer to Tpq as the “three-mode” transfer. The total energy transfer
function T (k, t) can be computed directly from Eq. (3.6) or as sum of the
contributions from Eq. (3.20):

T (k, t) =
∑

kp

Tp(k, kp, t), (3.21)

in which the “two-mode” transfer Tp is given by

Tp(k, kp, t) =
∑

kq

Tpq(k, kp, kq, t). (3.22)

The individual transfer terms T (k, t), Tp(k, kp, t), and Tpq(k, kp, kq, t) give,
respectively, more detailed characteristics of the energy transfer. The total
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transfer T (k, t) expresses the amount of energy transferred from (negative)
or to (positive) shell Sk. All three transfer terms T , Tp, and Tpq will be
used to investigate the transfer of energy in the sequel.

3.2.4 Simulation details

The numerical integration of the Navier–Stokes equations (3.1) is done via
a four-stage, second-order, compact-storage, Runge-Kutta method [35]. To
fully remove the aliasing error we applied a method that employs two shifted
grids and spherical truncation [17]. We consider the canonical problem of
forced turbulence in a cubic box of side Lb with periodic boundary condi-
tions. Direct numerical simulations are characterized by N3 computational
points, where N is the number of grid points used in each direction. A
detailed description of the simulation setup and the validation of the nu-
merical procedure can be found in Ref. [60]. The components of the wave
vector k are kα = (2π/Lb)nα where nα = 0,±1,±2, . . . ,±(N/2− 1),−N/2
for α = 1, 2, 3. The numerical simulations are defined further by the size
of the domain (Lb=1), the computational Reynolds number Re and the
energy injection rates to the two distinct bands (εw,1, εw,2).

We will study this homogeneous turbulent flow at two different compu-
tational Reynolds numbers, i.e., Re = 1061 and Re = 4243. In case of
homogeneous, decaying turbulence these Reynolds numbers correspond to
Rλ = 50 or 100, in terms of the initial Taylor-Reynolds number [60]. The
large-scale forcing of S1 has an energy injection rate εw,1 = 0.15 that is used
as a reference case. For all simulations the fractal dimension was kept con-
stant and equal to Df = 2.6 [70]. The smallest length scale that should be
accurately resolved depends on the size of the box, viscous dissipation, and
energy injection rate. Usually it is required that kmaxη > 1 [30, 109, 74]
in terms of the Kolmogorov length scale η and the maximal magnitude
of the wave vector kmax = πN/Lb that enters the computations. In our
simulations kmaxη ' 2 indicating that the small scales are well resolved.

We consider time-averaged properties of the turbulent flow. For a function
h these are defined by

〈h〉t = lim
t→∞

1

t− t0

t∫

t0

h(τ)dτ ≈
1

T − t0

T∫

t0

h(τ)dτ, (3.23)
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where T is sufficiently large. We start the averaging at t0 = 5 which
corresponds to about 10 eddy-turnover times for the simulated cases. The
final time was taken equal to T = 30, so all results are averaged over
approximately 50 eddy-turnover times. The accuracy of this approximation
to the long-time average, measured as the ratio of the standard deviation
and the mean signal, is less than 5% for all investigated quantities.

The energy spectra presented in this paper are shell and time averaged.
Moreover, we focus on compensated spectra Ec in which we use nondimen-

sional Kolmogorov units: Ec(k) = 〈ε̂〉
−2/3
t k5/3〈Es(k, t)〉t in terms of the

shell-averaged spectrum Es(k, t) =
∑

k∈Sk
E(k, t). The compensation of

the spectrum is not strictly required to observe the characteristic changes
in the energy distribution, but as it gives more information about the dom-
inant scales present in a flow it will be used throughout.

3.3 Broadband-forced turbulence

3.3.1 Energy distribution in forced turbulence

We first concentrate on the application of the high-k forcing band at dif-
ferent locations in spectral space. We apply a constant energy input rate
εw,2 = 0.15 to this band. Simultaneously, the large-scale forcing to the first
shell S1 is εw,1 = 0.15. The computational Reynolds number is Re = 1061.
We forced the bands Kp,p+3 for p = 5, 9, 17, 25. The parameters of these
simulations with some of the statistics are further presented in the Ap-
pendix (runs 1 and 14–17 in Tables 3.1 and 3.2 are concerned here).

The total kinetic energy, energy dissipation rate, and Taylor-Reynolds num-
ber are shown in Fig. 3.3 as a function of the location of the left-boundary p
of the high-k forced band Kp,p+3. The first data point refers to the classical
large-scale forcing only (run 1). Application of broadband forcing in the dif-
ferent bands changes the characteristics of the flow modifying primarily the
amount of small scales. This forcing in the second band is seen to increase
the energy dissipation in the system. The Kolmogorov dissipation scale
and the Taylor-Reynolds number decrease, suggesting that the characteris-
tic scale at which dissipation plays an important role is shifted to smaller
scales. We notice that the total energy in the system is only slightly af-
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Fig. 3.3: Time-averaged total kinetic energy Ê (solid), total energy dissipation
rate ε̂ (dotted), and Taylor-Reynolds number Rλ (dashed) for forced turbulence
with different locations of the second band at Re = 1061.
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Fig. 3.4: Compensated shell- and time-averaged energy spectrum Ec(k) for two-
band forcing: S1 and Kp,p+3. Large-scale forcing S1 (solid), additional forcing
in the second band K5,8 (dashed), K9,12 (dash-dotted), K17,20 (⊲), K25,28 (⋄) at
Re = 1061.
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Fig. 3.5: Time-averaged total energy Ê (solid), total energy dissipation rate ε̂
(dotted), and Taylor-Reynolds numberRλ (dashed) for two-band forced turbulence
with varying strength in the second band εw,2 at Re = 1061.

fected by the introduction of forcing. Moving the broadband forcing to very
small scales implies that there is no longer a strong influence on the flow
because the energy injected in the small scales appears to be also dissipated
immediately.

The compensated, shell-, and time-averaged energy spectra for different lo-
cations of the forced region Kp,p+3 are shown in Fig. 3.4. We may observe
that the forcing causes a nonlocal depletion in the energy spectrum for the
larger scales while the tail of the spectrum is less affected. The pileup in
the energy spectrum near the forcing region is characteristic of the explicit
high-k forcing and is suggestive of a “blocking” or reverse cascading. If the
separation between S1 and the high-k band is reduced, then the interaction
is stronger and a considerable depletion of the energy levels in the largest
scales arises. This is in agreement with the large-scale forced turbulence
results, where the local and nonlocal interactions were found to be energet-
ically dominant while the distant interactions were mainly responsible for
transferring structural information [12].

An effective modulation of turbulent quantities is possible not only by a
change in the range of forced modes but also via a change in the energy input
rate. To investigate this we adopted an energy injection rate εw,1 = 0.15
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Fig. 3.6: Compensated shell- and time-averaged energy spectrum Ec(k) for forced
turbulence in the band K17,20 at different strengths of forcing εw,2 and Re =
1061. Large-scale forcing only (solid), additional second band forcing with εw,2 =
0.07, 0.15, 0.30, 0.45, 0.60, 0.75, 0.90 denoted as �, dotted, dashed, dash-dotted, ⊲,
⋄, ◦, respectively. In each case εw,1 = 0.15.

for the large-scale forcing in S1 and we vary the intensity of forcing in
the second band by changing εw,2. We adopted the following values for
εw,2: 0.07, 0.15, 0.30, 0.45, 0.60, 0.75 or 0.90 and considered forcing of
four or eight shells in K17,20 or K17,24, respectively. The parameters and
characteristic quantities can be found in Tables 3.1 and 3.2 as runs 2–7 and
8–13.

The total energy in the system is only slightly affected by the forcing
strength in the second band as shown in Fig. 3.5. An increased forcing
strength introduces additional energy into the flow at small scales that is
dissipated very efficiently. This is expressed by the linear increase in 〈ε̂〉t. In
Fig. 3.6 we present the compensated energy spectrum for various strengths
of the forcing εw,2. The energy in the forced region reaches higher values
with increasing εw,2. Changing the strength of the broadband forcing in-
duces a characteristic depletion in the larger scales. This suggests that the
additional forcing term enhances the nonlinear interactions, which influ-
ence various scales quite far away from the forced region. The energy that
is injected at the larger scales is transferred even more effectively through
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the cascade as εw,2 increases. This effect appears similar to the so-called
spectral shortcut observed in nature and experiments [31]. In the case of
such a shortcut the energy from larger scales is diverted quite directly to
fine scales largely bypassing the traditional cascading. This mechanism
was explained in the case of flow over forest canopies in Ref. [31]. We will
investigate it in more detail in the next section.

A final quantification of the nonlocal effect on the spectrum that arises from
the high-k forcing is collected in Fig. 3.7. Here we displayed the normalized
accumulated energy

SE(k) =

∑
k′6k Ec(k

′)
∑

k Ec(k)
(3.24)

in the consecutive shells. As pointed out, varying the properties of a flow
in a specified spectral region can change the behavior of a flow well outside
this region. In terms of SE(k) we notice that close to 90% of the energy is
present in the first ten shells (Fig. 3.7) when only the large-scale forcing is
applied. Influencing the flow at smaller scales in K17,24 is seen to remove
most of the energy from these larger scales while there is only a slight impact
on the dynamics of small scales. This effect becomes more pronounced
with increasing εw,2. The underlying changes in the energy transfer will be
considered in more detail in Sec. 3.4.

3.3.2 Energy transfer spectra

The transfer of energy in turbulence can be described in spectral space
as interactions of triads of wave vectors (k,p,q) that form triangles, i.e.,
k = p+q. Direct numerical simulation with large-scale forcing shows that
nonlocal interactions between wave vectors combine into a local energy
flow [111, 112]. By applying forcing that is located in a high-k range of
spectral space we perturb the “natural” cascading process. The associated
changes in the transfer of energy will be investigated in more detail in
this subsection. Specifically, we focus on the energy transfer and energy
transport power spectra.

In large-scale forced turbulence energy is injected into the first shell and
removed by the transfer term. This gives rise to negative values for the en-
ergy transfer in the forced region. In the higher shells the transfer function
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Fig. 3.7: Normalized accumulated energy SE(k) for two-band S1 and K17,24

forced turbulence at Re = 1061. Large-scale forcing at εw,1 = 0.15 (solid) with
additional second band forcing at εw,2 = 0.15, 0.30, 0.45, 0.60, 0.75, 0.90 is denoted
by the dotted, dashed, dash-dotted, ⊲, ⋄, and ◦ curves, respectively.
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Fig. 3.8: Time-averaged energy transfer T (k) for two-band S1 and K17,20 forced
turbulence for different strengths of forcing in the second band εw,2 at Re =
1061. Large-scale forcing (solid) with additional second band forcing at εw,2 =
0.07, 0.15, 0.30, 0.45, 0.60, 0.75, 0.90 denoted by �, dotted, dashed, dash-dotted, ⊲,
⋄, and ◦ curves, respectively.
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takes on positive values which illustrates the transfer of energy through
the cascade toward higher k. By invoking the broadband forcing we influ-
ence this basic energy cascade. This is clearly seen in the energy transfer
spectrum which develops distinctive regions where T (k) = 〈T (k, t)〉t is neg-
ative. Figure 3.8 characterizes changes in the transfer function due to an
increased forcing strength of the high-k band. The transfer function reaches
lower values between the low- and high-k forcing regions compared to the
large-scale forced case. The reverse situation appears near the high-k forced
band where the transfer increases with an increase of the forcing intensity.
This is in agreement with the energy spectra presented earlier, where we
observed the depletion of energy between the forced regions. This effect
can be observed more directly from spectra of energy transport power that
will be presented next.

The energy transport power gives the rate at which energy is transferred
from shells k′ < k to those with k′ > k:

Π(k, t) =

kmax∫

k

T (k′, t)dk′ = −

k∫

0

T (k′, t)dk′, (3.25)

where kmax = πN/Lb is the cutoff wave number. We present the time-
averaged transport power spectrum Π(k) = 〈Π(k, t)〉t in Fig. 3.9 for forcing
with various strengths in the K17,24 band. In case of large-scale forcing
only, the transport power is positive for all k as the energy is transferred
toward smaller scales and reaches zero for large k indicating the general
property of the total transfer function T̂ (t) = 0. The application of high-k
forcing for k1 < k ≤ k2 changes this well-known picture. First, we note that
the values of the transport power are all similar in the largest scales, where
the flow is governed by the same energy input. The transport power for
0 < k ≤ k1 becomes larger at higher εw,2. A striking change of the behavior
arises for k near and inside the high-k forced region. The transport power
spectrum even assumes negative values for k ≈ k1.

The observed behavior of the transport power in Fig. 3.9 is partly due to
the relatively low Reynolds number that was used. At sufficiently high
Reynolds numbers, the dissipation scales are much more separated from
the high-k forced scales. In this case a plateau of Π will arise at low wave
numbers: Π(k, t) ≈ εw,1 for k low enough [71]. This property is not observed
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Fig. 3.9: Time-averaged transport power spectra for broadband-forced turbulence
in the K17,24 band at Re = 1061. Large-scale forcing (solid) with additional
second band forced at εw,2 = 0.15, 0.30, 0.45, 0.60, 0.75, 0.90 denoted as dotted,
dashed, dash-dotted, ⊲, ⋄, ◦ curves, respectively. The supplementary forced region
k1 < k ≤ k2 is denoted with dotted lines.

at the computational Reynolds number considered so far.

In cases specified by runs 18 and 19 we consider the flow at a four times
higher computational Reynolds number. The overall results for the energy
spectra and energy transfer were found to be qualitatively the same as in
the lower Reynolds number cases. However, a plateau may now be observed
in Fig. 3.10, where we present the transport power for the higher Reynolds
number. In this case the transport power does not decrease below zero
in the forced region. The second forcing band is well separated from the
dissipation region and the transport power in this band is much larger,
approaching a maximum 0.23 that is near the energy injection rate εw,2.

In this section we have looked at the effect of high-k modulation of the
energy cascading process that leads to an increased energy dissipation in
small scales. This process is supported by an increased energy transfer
to smaller scales via nonlocal triad interactions. The effect of increased
energy rate by the application of broadband forcing is seen in the energy
transfer and transport power spectra. In the next section we will look more
closely at the interactions of various scales of motion under the influence



70 Chapter 3. Energy dynamics in broadband-forced turbulence

10
0

10
1

10
2

−0.05

0

0.05

0.1

0.15

0.2

0.25

k/(2π)

Π

Fig. 3.10: Time-averaged transport power spectra for Reynolds number Re =
4243 and forcing in the K17,20 band. Large-scale forcing (solid), additional broad-
band forcing in the K17,20 band with εw,2 = 0.30 (dashed).

of broadband forcing by considering the two- and three-mode transfers Tp

and Tpq introduced in Eqs. (3.22) and (3.20).

3.4 Two- and three-mode interaction of scales

The energy dynamics of turbulent flow is generally discussed in terms of
the transfer of kinetic energy from larger to smaller scales through nonlin-
ear interactions. The statistical properties of turbulence are determined by
these interactions. In the previous section we have shown how additional
broadband forcing of inertial range scales can modify the classical picture of
the Kolmogorov cascade. To investigate the observed turbulence modula-
tion effects in more detail we consider the underlying two- and three-mode
energy transfer terms in this section. This will clarify to some extent the
changes in the various nonlinear interactions that give rise to the observed
alterations in the spectra and energy transfer.

We start with the three-mode transfer that is averaged in time Tpq(k, kp,
kq) = 〈Tpq(k, kp, kq, t)〉t and split this term into its positive and negative
parts:

Tpq(k, kp, kq) = T−
pq(k, kp, kq) + T+

pq(k, kp, kq), (3.26)
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Fig. 3.11: The normalized triad energy transfer function T pq(k, kp, kq) for
k/(2π) = 14, 42, 82 in (a)–(c), respectively. The dashed lines correspond to
the lower (k1) and upper (k2) wave numbers used in the broadband forcing at
Re = 4243. The contour levels are ±1/2

n
, n = 0, . . . , 18 that are the same for all

three pictures.
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in which

T+
pq(k, kp, kq) =

{
Tpq(k, kp, kq) if Tpq(k, kp, kq) ≥ 0,

0 otherwise,
(3.27)
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with a similar definition for the negative part:

T−
pq(k, kp, kq) =

{
Tpq(k, kp, kq) if Tpq(k, kp, kq) < 0,

0 otherwise.
(3.28)

In terms of these contributions we examine the normalized triad energy
transfer

T pq(k, kp, kq) =
T−

pq(k, kp, kq)

Tmin(k)
+
T+

pq(k, kp, kq)

Tmax(k)
, (3.29)

where

Tmin(k) = −min
kp,kq

(
T−

pq(k, kp, kq)
)
,

Tmax(k) = max
kp,kq

(
T+

pq(k, kp, kq)
)
. (3.30)

Through the scaling of T−
pq and T+

pq with Tmin and Tmax, respectively, the
normalized transfer is well suited to characterize the overall structure of the
three-mode transfer function, even in cases in which the order of magnitude
of Tpq varies considerably. The normalized energy transfer T pq(k, kp, kq) is
plotted in Fig. 3.11 for three different wave numbers k/(2π) = 14, 42, 82,
based on Run 19 in which Rλ

∼= 75. The three k values that are selected
correspond to wave numbers below the forced region [k/(2π) = 14] or to
wave numbers that are considerably larger. Such contour maps for T pq

can also be found in Ref. [84] for the case of large-scale forced turbulence.
For completeness, we also presented the results from such large-scale forced
turbulence (run 18) comparing these directly to the broadband-forced tur-
bulence (run 19). This contour map is shown in Fig. 3.12 for k/(2π) = 46.

The strongest interactions are observed for modes with wave numbers be-
tween the largest forced scales and the high-k forced region as can be seen
in Fig. 3.11(a). As in the case of large-scale forcing only we observe very
strong interactions between Fourier modes of considerably different scales.
These are located in the corners of the rectangular domains in the kp-kq

plane. Distant interactions are well separated from the origin in these fig-
ures. Their contribution to the transfer is seen to be very small, as also
noticed earlier in the literature [84]. The change of sign in the transfer
function that occurs at kp = k and kq = k, respectively, on the kp-kq planes
indicates that in this region the energy is mainly transferred to higher k.
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Fig. 3.14: The triad energy transfer function Tp(k, kp) at kp/(2π) = 30, 34, . . . , 94
and Re = 4243 (run 19).

The most efficient transfer takes place between two wave vectors of similar
size and one of quite different size as seen in the corners of the rectangular
area in Fig. 3.11. This is in agreement with previous numerical experiments
reported by various authors [28, 84, 113]. However, compared to the case
of large-scale forcing only, we now observe quite extended, highly energetic
interactions with the high-k forced region. The second forced band causes
regions with high intensity of interactions to be much wider compared to
the case of large-scale forcing only. This is visible directly in Fig. 3.12. The
regions with positive and negative transfer are extended from the corners
to the wave-number regions where the actual application of forcing in the
second band occurs. The energy is exchanged predominantly between scales
that are more separated than in case of the large-scale forced flow where the
dominant interactions occur only in the corners. This is a clear indication
of the stronger nonlocal interactions, mentioned earlier.

For further clarification of energy transfer processes we turn to the time-
averaged two-mode energy transfer Tp(k, kp) = 〈Tp(k, kp)〉t, which gives
information about the interactions involving a sum over all kq wave num-
bers at fixed k and kp. The sum involves all kq wave numbers that are
constrained by the triadic interactions, i.e., their length may vary between
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Fig. 3.15: The triad energy transfer function Tp(k, kp) at kp/(2π) = 30 and
Re = 1061. Large-scale forcing (solid) with additional second band forced at
εw,2 = 0.07, 0.15, 0.30, 0.45, 0.60, 0.75, 0.90 denoted as �, dotted, dashed, dash-
dotted, ⊲, ⋄, ◦, respectively.

|k−p| and |k+p|. We normalized the two-mode transfer function Tp(k, kp)
in a similar manner as Tp(k, kp, kq):

T p(k, kp) =
T−

p (k, kp)

Tmin(k)
+
T+

p (k, kp)

Tmax(k)
, (3.31)

where T±
p , Tmin, and Tmax are defined in terms of Tp in a manner analogous

to the definitions in Eqs. (3.26), (3.27), (3.28) and (3.30). In Fig. 3.13
we plotted the contour map of T p(k, kp). For larger wave numbers this
quantity was found to look quite similar to the case of large-scale forced
turbulence. The two-mode transfer function changes sign from negative to
positive at k = kp indicating a downward energy flow. Comparing this to
the large-scale forced turbulence we observe (i) strong influence of forcing
in the regions where it is applied (denoted with dashed lines), (ii) extended
negative energy transfer region with comparatively high magnitude above
the k = kp line, (iii) amplification of the backward energy transfer indicated
by the positive region for small k and large kp. This region is separated from
the intense negative energy transfer region by the indicated accumulation
of contour lines above the k = kp line appearing as the curved black line.
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A more quantitative overview is plotted in Fig. 3.14 displaying the two-
mode transfer function in the range kp/(2π) = 30, 34, . . . , 94. This clearly
shows the cascading character of the energy flow from larger to smaller
scales in the system. The modification due to the high-k forcing expresses
itself by the sequence of one slightly positive, two quite negative and one
quite positive local extrema. The intensity of the energy transfer decreases
with increasing wave numbers as less energy needs to be transferred. This
corresponds directly to the magnitude of Tmin(k) and Tmax(k) used in the
normalization of Tp(k, kp) [Eq. 3.31]. The part in which the transfer is
negative is much wider in the broadband-forced case compared to the large-
scale forced turbulence results.

We conclude by considering the effect of varying the forcing strength εw,2 at
a characteristic wave number kp/(2π) = 30 on the two-mode energy transfer
function Tp(k, kp) [Fig. 3.15]. In the large-scale forced case at εw,2 = 0 the
transfer is very small compared to the cases in which the high-k forcing is
active. In addition, the effect is very localized (solid line in Fig. 3.15). The
forcing in the high-k band completely changes this behavior. The intensity
of the energy transfer is directly related to the value of εw,2. Additional
extrema appear in the two-mode transfer function. The high-k forced cases
display two pairs in which a negative minimum is combined with a positive
maximum, while large scale forcing only yields one such combination. Cor-
respondingly, the min-max pair at high k is associated with the large scale
forcing in S1 while the min-max pair at lower k originates from the addi-
tional forcing in the second band. We also investigated three-band forcing
and observed further peaks in the energy transfer spectra.

3.5 Conclusions

We performed direct numerical simulations of broadband-forced turbulence
to explore accumulated effects on the time-averaged energy transfer in
isotropic homogeneous turbulence. Using broadband forcing based on a
recently proposed mathematical model for a fractal stirrer [70] we have
shown how the application of such forcing modulates turbulence both qual-
itatively and quantitatively. The modulation is similar to that observed in
experiments based on flows through porous media or canopies. Specifically
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the perturbation of a flow arising from the contact with complex physi-
cal boundaries enhances the dissipation and causes an abrupt energy drain
from large to small scales. This aspect of simultaneous perturbation of a
flow on a spectrum of length scales is retained in the cases studied here.

We found that broadband forcing that perturbs a turbulent flow at smaller
scales enhances nonlocal triad interactions and alters the detailed cancel-
lation processes that occur in the traditional large-scale forced flows. This
leads to nonlocal modifications in the energy transfer spectrum and the
energy distribution among scales. We verified this by partitioning the non-
linear term in the Navier–Stokes equations in terms of different triad contri-
butions to the total transfer function. The energy transport power is found
to be enhanced in the spectral region in between the large-scale and the
high-k forced bands. This characteristic may be influenced via the control
parameters of the applied forcing, i.e., its strength and extent of agitated
scales, and allows optimizing transport processes of turbulent flows.

Future study will involve the examination of the consequences of forcing
in the physical space context. We will investigate the geometrical statis-
tics of broadband-forced turbulence looking at the interactions of strain
and vorticity and their modulation by the applied forcing. This may help
understanding which physical processes are responsible for the observed
modulations and how to exploit this to enhance physical space mixing.

Appendix

The main parameters of the simulations are collected in Table 3.1. The
corresponding statistics of the velocity fields are summarized in Table 3.2.
The quantities compiled in Table 3.2 are the Kolmogorov dissipation wave
number kd which is the inverse of the Kolmogorov length scale η, the prod-
uct kmaxη, the Taylor microscale λ = [5Ê/

∑
k k

2E(k, t)]1/2, the Taylor-
microscale Reynolds number Rλ = λu′/ν, the integral length scale L =
3π/(4Ê)

∑
k k

−1E(k, t), the integral Reynolds number RL = Lu′/ν, the

rms velocity u′ = (2Ê/3)1/2, the energy-dissipation rate ε =
∑

k 2νk2E(k, t),

the eddy-turnover time τ = L/u′ and the skewness S = 2/35 (λ/u′)3∑
k k

2T (k, t). All these quantities in Table 3.2 are time averaged 〈·〉t as
described in Sec. 3.2.4.
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Run εw m p Run εw m p

1 0.15⋆ − −

2 0.07 17 20 8 0.15 17 24
3 0.30 17 20 9 0.30 17 24
4 0.45 17 20 10 0.45 17 24
5 0.60 17 20 11 0.60 17 24
6 0.75 17 20 12 0.75 17 24
7 0.90 17 20 13 0.90 17 24

14 0.15 5 8 18 0.15⋆ − −
15 0.15 9 12 19 0.30 17 20
16 0.15 17 20
17 0.15 25 28

Table 3.1: Direct numerical simulation parameters using a resolution of N = 128
and Re = 1061 in runs 1–17, and a resolution of N = 256 at Re = 4243 in runs
18–19. The cases with large-scale forcing only are denoted by ⋆. In this table εw

denotes the energy input rate in the high-k band, except runs 1 and 18 in which
it corresponds to the energy input rate in S1. Moreover, m and p characterize the
spectral support of the high-k band Km,p.

We also checked that the alteration of the cascading process caused by the
high-k forcing does not influence the isotropy of the flow field. A measure
of isotropy was suggested in Ref. [23] given by I2(t) = ψ1(t)/ψ2(t) where
ψ1(t) =

〈
|e1(k)u(k, t)|2

〉
, ψ2(k, t) =

〈
|e2(k)u(k, t)|2

〉
are the kinetic energy

along the components of two orthogonal solenoidal unit vectors e1(k) =
k×z(k)/|k×z(k)|, e2(k) = k×e1(k)/|k×e1(k)| where z(k) is a randomly
oriented unit vector. The operator 〈·〉 denotes averaging over these random
unit vectors. For isotropic turbulence one can expect to find I = 1, i.e.,
ψ1 = ψ2 which was confirmed to close approximation in all simulations.
Deviations from the expected value for I were found to be of the order
of 1%.
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Run kd kmaxη λ Rλ L RL u′ ε τ S

1 116 3.26 0.123 52 0.23 97 0.40 0.15 0.57 0.49

2 130 2.91 0.100 43 0.23 100 0.41 0.24 0.56 0.35
3 156 2.42 0.069 30 0.23 98 0.41 0.50 0.54 0.21
4 168 2.25 0.061 27 0.23 101 0.42 0.66 0.54 0.17
5 178 2.12 0.056 25 0.22 102 0.43 0.83 0.52 0.15
6 186 2.03 0.051 23 0.22 102 0.43 1.00 0.52 0.14
7 193 1.95 0.048 22 0.22 100 0.43 1.16 0.50 0.13

8 140 2.68 0.085 37 0.23 99 0.41 0.33 0.56 0.29
9 156 2.41 0.070 31 0.23 102 0.41 0.50 0.56 0.22
10 169 2.24 0.060 26 0.22 98 0.41 0.68 0.54 0.18
11 178 2.11 0.054 24 0.22 100 0.42 0.85 0.53 0.16
12 187 2.02 0.049 22 0.22 97 0.42 1.03 0.52 0.15
13 194 1.94 0.046 21 0.21 96 0.42 1.20 0.50 0.13

14 138 2.73 0.090 39 0.22 96 0.41 0.30 0.52 0.44
15 138 2.72 0.089 39 0.23 102 0.42 0.31 0.56 0.39
16 140 2.69 0.084 36 0.22 96 0.40 0.33 0.55 0.28
17 143 2.64 0.082 36 0.23 98 0.41 0.35 0.56 0.22

18 325 2.32 0.065 115 0.21 368 0.42 0.15 0.50 0.51
19 432 1.74 0.040 75 0.21 394 0.44 0.46 0.47 0.38

Table 3.2: Direct numerical simulations statistics of the different cases studied.
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Chapter 4

Response maxima in periodically

forced turbulence†

The response of turbulent flow to time-modulated forcing is studied by direct
numerical simulations of the Navier–Stokes equations. The large-scale forcing
is modulated via periodic energy-input variations at frequency ω. The re-
sponse is maximal for frequencies in the range of the inverse of the large-
eddy turnover time, confirming the mean-field predictions of von der Heydt,
Grossmann and Lohse (Phys. Rev. E 67, 046308 (2003)). In accordance
with the theory the response maximum shows only a small dependence on
the Reynolds number. At sufficiently high frequencies the amplitude of the ki-
netic energy response decreases as 1/ω. For frequencies beyond the range of
maximal response, a significant change in the phase-shift relative to the time-
modulated forcing is observed. For large ω the phase shift approaches roughly
90o for the total energy and 180o for the energy-dissipation rate.

4.1 Introduction

Recently, response maxima in time modulated turbulence have been pre-
dicted within a mean field theory of turbulence [44]. Subsequently, such
response maxima were found [45] in numerical simulations of simplified dy-
namical turbulence models such as the GOY model [5, 10, 53] or the reduced
wave vector approximation (REWA) [29, 39, 40, 41].

†“Response maxima in time-modulated turbulence: Direct Numerical Simulations” by
A. K. Kuczaj, B. J. Geurts, and D. Lohse appeared in Europhysics Letters 73 (6),
2006 [61].
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However, these response maxima computed in Ref. [45] were not pronounced
at all, due to the approximate treatment of the small scales in either of
these approaches. Indications of response maxima resulting from time-
modulated forcing have subsequently also been seen in experiment [15].
The experimental observations were done by introducing a time-dependent
swirl to fluid in a closed container and monitoring the energy injection rate.
The selected set-up did not allow to identify possible flow structuring under
resonance conditions, nor to conclusively distinguish such resonance phe-
nomena from flow organization associated with the size of the container.
Earlier, response functions of jet turbulence and thermally driven turbu-
lence were measured [18, 16]. The response of various space dependent
quantities in turbulent channel flow to periodically forced oscillations was
examined in Ref. [96]. There the boundary layers and thus the anisotropy
of the flow play a major role, but go beyond the scope of presented work;
their role is a possible direction of further numerical investigations.

The purpose of this paper is to complement these theoretical, numerical,
and experimental observations by direct numerical simulations (DNS) of
turbulence, subject to time-modulated large-scale forcing. In a turbulent
flow whose large-scale forcing is periodically modulated in time, all typi-
cal flow properties develop a complex time-dependence. However, averag-
ing such turbulent time-dependence, conditioned on the phase of the pe-
riodic modulation, yields a clear and much simpler periodic pattern [45].
The dependence of the conditionally averaged response on the frequency of
the modulation may be quantified by monitoring changes in flow properties
such as total energy, energy-dissipation rate, or Taylor-Reynolds number.
In case of a fast modulation with a frequency ω ≫ ωL, where ωL is the in-
verse large-eddy turnover time, only a modest effect on the flow is expected,
or none at all. Likewise, if ω ≪ ωL the modulation is quasistationary and
the flow may be expected to closely resemble the corresponding unmodu-
lated case. In between these extremes a more pronounced response may
develop, which is the subject of this investigation.

The DNS approach allows to investigate in detail the response of turbu-
lent flow properties to periodic modulation of the forcing. In particular,
we present a parameter study involving a large range of modulation fre-
quencies for two different Reynolds numbers, and establish response max-
ima in a variety of flow properties. The response is found to be signifi-
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cantly increased at modulation frequencies on the order of the inverse of
the eddy-turnover time. Near resonance, the “activity” of the turbulent
flow is found to be considerably higher than in the unmodulated case. At
high frequencies ω the amplitude of the modulation-specific response of
the kinetic energy is found to uniformly decrease to zero as ω−1. This type
of external control of turbulence may offer new opportunities with relevance
to technological applications, e.g., increased mixing efficiency.

First, the computational flow model is introduced. Subsequently, an overview
of the ensemble averaging procedure and data extraction is given. Then
the main result, the response of various flow properties to time-modulated
forcing, is presented.

4.2 Computational flow model

The full Navier–Stokes equations for incompressible flow are numerically
solved in a periodic flow domain with a pseudo-spectral code. In spectral
space, the Navier–Stokes equations read

(
∂

∂t
+ ν|k|2

)
uα(k, t) = Mαβγ(k)

∑

p+q=k

uβ(p, t)uγ(q, t) + Fα(k, t), (4.1)

withMαβγ(k) = 1
2ı

(
kβDαγ(k) + kγDαβ(k)

)
andDαβ(k) = δαβ−kαkβ/|k|

2.

Here, ν is the kinematic viscosity, uα(k, t) is the Fourier coefficient of the
velocity field at wave vector k and time t, and Fα is the time-modulated
forcing.

First, we recall that traditional agitation of the large-scale structures in
a turbulent flow may be achieved by introducing a forcing term restricted
to wave vectors with |k| ≤ kF , i.e., identifying a forcing range through
the upper-limit kF . Specifically, we force the turbulence similarly as in
Refs. [41, 36],

fα(k, t) =
εw
NF

uα(k, t)

|u(k, t)|2
; |k| ≤ kF , (4.2)

where εw is the constant energy injection rate andNF = NF (kF ) is the total
number of forced modes. For convenience, the wave vectors are grouped in
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spherical shells with the nth shell containing all modes such that 2π
Lb

(n −

1/2) < |k| ≤ 2π
Lb

(n + 1/2), where Lb is the box-size in physical space.
We apply large-scale forcing either in the first shell (i.e., kF = 3π/Lb,
which implies NF = 18, the case considered in Ref. [45]) or in the first
two shells (i.e., kF = 5π/Lb, which implies NF = 80). The second step in
specifying the forcing Fα introduces the periodic time modulation

Fα(k, t) = fα(k, t)
(
1 +AF sin(ωt)

)
, (4.3)

where AF is the amplitude of modulation and ω its angular frequency.
The modulated forcing corresponds to a total energy-input rate, which
oscillates around εw with amplitude AF ,

TF (ω, t) =
∑

k

u∗α(k, t)Fα(k, t) = εw

(
1 +AF sin(ωt)

)
. (4.4)

The length and time scales of the numerical simulation are chosen by pick-
ing Lb = 1 for the box size in physical space, and εw = 0.15 for the energy
injection rate. The Reynolds number is then determined by the dimension-
less viscosity ν. Choosing ν−1 = 1061 and ν−1 = 4243 result in respective
Taylor-Reynolds numbers Rλ

∼= 50 and Rλ
∼= 100. We use these two cases

as references denoted by R50 and R100.

The spatial resolution needed may be estimated by requiring kmaxη > 1
[86] with η the Kolmogorov dissipation scale and kmax the highest wave
number included in the spatial discretization. For the R50 case a resolution
of at least 643 computational points is required while for R100 a higher
resolution of 1923 points is necessary. The latter poses a strong compu-
tational challenge in view of the extensive ensemble averaging and large
number of modulation frequencies. However, it was found that many large
scale quantities, such as the total energy, do not depend too sensitively
on resolution. As an example, a resolution of 643 points corresponds to
kmaxη ≈ 0.4 for the R100 case. Still, this resolution is quite adequate for
studying the response of the total energy. This was verified by repeating
the analysis at a selection of modulation frequencies with resolutions 1283

and 1923. The predictions of quantities that rely more on small scales,
such as the dissipation rate, contain a higher numerical uncertainty for
R100 case and 643 computational points, but still allow a clear interpreta-
tion of the main turbulence response. This was separately assessed using
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the higher resolution data at selected characteristic frequencies. The direct
numerical simulation for the unmodulated case starts from an initial con-
dition that was generated on the basis of the Pao spectrum [86]. We adopt
exactly the same initial conditions as in Ref. [77], which allow a sepa-
rate validation of the simulations. Explicit second order compact-storage
Runge-Kutta time-stepping [35] with fully de-aliased pseudo-spectral dis-
cretization is used. The unmodulated turbulent flows provide the point of
reference for investigating the effect of modulated forcing, to which we turn
next.

4.3 Averaging procedure and simulation setting

In order to analyze the response to a time-modulated forcing, the precise
extraction of the amplitude and phase of the conditionally averaged varia-
tions is a key issue. Two steps can be distinguished, i.e., the computation
of the conditionally averaged signal itself and the subsequent determination
of amplitude and phase characteristics of this signal, see Fig. 4.1.

We adopt ensemble averaging to determine the conditionally averaged sig-
nal S(ω, t), where S(ω, t) is the total energy E(ω, t), the Taylor-Reynolds
number Rλ(ω, t), or the energy-dissipation rate ε(ω, t). Ensemble averag-
ing requires a sufficiently large sample of statistically independent signals
{Sj(ω, t)} to be generated. We compute the unmodulated flow and store
Nr realizations of the turbulent solution corresponding to t > 10. The lat-
ter condition allows transients related to the initial condition to become
negligible. The time separation between these snapshots is larger than
two eddy-turnover times. Subsequently, each of these Nr realizations was
taken as the initial condition for a simulation with time-modulated forc-
ing at a particular frequency ω. This provides Nr sample signals that
need to be averaged to obtain the conditionally averaged signal S(ω, t).
Repeating this procedure for a range of frequencies yields the total re-
sponse characteristics. Given the conditionally averaged response signal
S(ω, t), there are various ways in which amplitude and phase informa-
tion can be extracted. In Ref. [15] the signal S(ω, t) is first averaged
over time to yield S(ω). Subsequently, the normalized variation defined

as Q
(a)
S (ω, t) = S(ω, t)/S(ω) is studied using the Fourier transform (F) in

which time t is transformed into frequency f . Correspondingly, the power
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amplitude spectrum Q̂
(a)
S (ω, f) = F

(
Q

(a)
S (ω, t)− 1

)
can be obtained, which

assumes a maximum value AS(ω) = max{|Q̂
(a)
S (ω, f)|}|f=fA(ω), as denoted

in Fig. 4.1 for forcing AF (ω), total energy AE(ω), and energy-dissipation
rate Aε(ω). The maximum AS(ω) as the amplitude at dominant fre-
quency can be used to quantify the response as function of the modula-
tion frequency ω. This approach is accurate if the Fourier transforma-
tion is applied to an integer number of modulation periods. The method
used in Ref. [45] is based on a fitting procedure in which it is assumed
that S(ω, t) ≈ S + AS sin

(
ωt + ΦS

)
. The dependence of the parame-

ters {S,AS ,ΦS} on ω may be obtained from a least squares procedure.
This evaluation method assumes that the conditionally averaged signal has
the same frequency as the forcing.

t
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Fig. 4.1: The amplitudes AF (ω), AE(ω), Aε(ω) and phase-shifts ΦF (ω) ≡ 0,
ΦE(ω), Φε(ω) of the forcing TF (ω, t) (dashed line), the energy QE(ω, t) (labeled ◦),
and the energy-dissipation rate Qε(ω, t) (labeled ⋄) normalized by their respective
means TF = εw, QE(ω), and Qε(ω) obtained from simulations at the modulation
frequency ω = 0.8π.

At modest ensemble size Nr it is beneficial to explicitly incorporate varia-
tions in the unmodulated reference signal to improve the data evaluation.
This motivates an alternative method in which we determine Nr sample
signals {Sj(ω, t)} corresponding to the modulated case, as well as Nr un-
modulated signals {sj(t)} that start from the same set of initial conditions.
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This allows to generate different “normalized” signals such as Q
(b)
S (ω, t) =

∑
j Sj/

∑
j sj or Q

(c)
S (ω, t) =

∑
j Sj/sj/Nr. These normalized signals pro-

vide estimates that compensate to some degree for the relatively small
number of samples or for an unknown mean component but have the draw-
back that they cannot be applied in the context of a physical experiment.
Additionally, we divided these signals by its means (time-averages) and
removed the constant component corresponding to the zero-frequency re-

sponse. Application of the Fourier transform, Q̂
(b)
S = F

(
Q

(b)
S /Q

(b)
S − 1

)
and

Q̂
(c)
S = F

(
Q

(c)
S /Q

(c)
S − 1

)
, provides direct access to amplitude and phase

information. Each of these methods yields the same general impression
of response maxima in time-modulated turbulence. Differences arise only
on a more detailed level of the processed data but these do not obscure
the interpretation of the main features of the response. Therefore we only

present results extracted from the normalized signal QS/QS ≡ Q
(c)
S /Q

(c)
S ,

unless explicitly stated otherwise.
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Fig. 4.2: The response QE(ω, t)/QE(ω) for the R50 case recorded at differ-
ent modulation frequencies ω is shown in (a) together with the modulation of
the forcing TF (ω, t)/εw (dashed). The corresponding power spectra of the Fourier
transform as function of the transformed frequency f are collected in (b). Mod-
ulation frequencies ω/(2π) = 0.1, 0.2, 0.3, 0.4, 0.5, 2.0 are included and labeled by
◦, ⋄,�,×, ⊲, and ⋆, respectively.
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The simulations were performed in the frequency range π/5 ≤ ω ≤ 80π
with time-modulated forcing at an amplitude AF = 1/5. For each of the Nr

unmodulated initial conditions, nT = 4 periods of the modulated forcing
were simulated, i.e., each sample signal was computed for nTT time-units
with modulation-period T = 2π/ω. Since an explicit time-stepping method
was adopted, the cases at low ω add particularly to the total computational
cost. The number of realizations required in the ensemble was investigated
separately. Results for several modulation frequencies were compared at
Nr = 10, 30 and 50; it was found that 30 independent samples provide
adequate statistical convergence for our purposes. We storedNt = 40 points
per modulation period and present results obtained by evaluating the last
two recorded periods, i.e., 2T ≤ t ≤ 4T . Comparison with results obtained
by evaluating data on 0 ≤ t ≤ 4T yielded only minor differences. Finally,
the phase ΦS(ω) between the forcing and the response can be computed
from the Fourier-transformed data as well. At the dominant frequency fA

of the transformed signal Q̂S(ω, f) = F
(
QS(ω, t))/QS(ω, t)− 1

)
, the phase

becomes ΦS(ω) = arctan
(
Im(Q̂S(ω, fA))/Re(Q̂S(ω, fA))

)
.

4.4 Modulated turbulence

In Fig. 4.2(a) the conditionally averaged signal QE(ω, t)/QE(ω) based on
total energy is shown at a number of modulation frequencies. The con-
ditionally averaged response has a clear oscillatory behavior. The Fourier
transform of the data from Fig. 4.2(a) is shown in Fig. 4.2(b) and displays
a dominant maximum corresponding to the forcing frequency fA = ω/(2π).
This observation confirms that the least-squares fitting procedure adopted
in Ref. [45] is justified.

We now focus on the amplitude of the total energy response as function of
the modulation frequency ω. The amplitude AE(ω) computed as maximum
of the Fourier-transformed normalized signal for each modulation frequency
is shown in Fig. 4.3(a). The maximum response appears at ωmax ≈ 1.5, in
accordance with the expectation [44, 44] that it should be close to the in-
verse large-eddy turnover time. In addition, the location of the maximum
is not very sensitive to Rλ, reflecting that the response maximum is mainly
associated with the large-scale features in the flow. At high modulation
frequencies ω > ωmax the decay of AE is proportional to ω−1, which be-



4.4. Modulated turbulence 89

comes particularly visible in the compensated response ωAE(ω), Fig. 4.3(b).
At very low modulation frequencies ω < ωmax a plateau in AE(ω) must
of course develop [44, 45], as the turbulence then completely follows the
forcing. Our simulations do not achieve small enough ω to observe a pro-
nounced plateau. The maximum of ωAE(ω) is about 35% higher as com-
pared to the value at high ω. This is as expected lower than predicted
by the mean-field theory described in Ref. [44] as the fluctuations slightly
smear out the mean-field maximum, but it is much more pronounced com-
pared to results based on the GOY or REWA simulations [45]. The reason
is that, although the appearance of the response maxima is a large-scale
effect, the correct resolution of the small scales is important for a proper
quantitative representation of the effect, because the small-scale resolution
affects the energy flux downscale. We also calculated the response curves
for the Taylor-Reynolds number; the results are quite similar.

Can such a dependence on the type of forcing also be observed in our
numerical simulations? To find out we force a higher wave-number band of
modes (kF ≤ 5π/Lb) instead of restricting us entirely to low wave-number
forcing. The result is seen in Fig. 4.3(b) indicated by (⋄). Indeed, for
this type of forcing the response maximum is seen to shift to higher ω and
becomes less pronounced. Further quantitative connections with physical
experiments such as the influence of anisotropy [96] are currently being
investigated.

The phase difference between the forcing modulation and the conditionally
averaged total energy response is shown in Fig. 4.3(a) as inset. We observe
a strong variation in this phase difference for modulation frequencies near
the most responsive modulation frequency. It appears that the maximum
response as shown in Figs. 4.3(a) and (b) occurs at a modulation frequency
where also the variation in the phase difference is largest. Very recently,
a strong phase shift was also found in windtunnel experiments in which
a time-modulation is introduced via a periodic cycling of an upstream active
grid. In these experiments the maximum response was found to shift to
higher frequencies in case the characteristic length scales of the forcing
were reduced [97].

The energy-dissipation rate in the system is a quantity that is accessible to
direct physical experimentation. In Figs. 4.3(c) and (d) we show the energy-
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Fig. 4.3: Amplitudes: AE(ω) (a), Aε(ω) (c) and compensated amplitudes:
ωAE(ω) (b), ωAε(ω) (d) for the energy and energy-dissipation rate obtained for
R50 (labeled ◦) and R100 (labeled ⊲) cases. Verification at selected frequencies for
resolution 1283 and R100 case (labeled ⋆). Results for R50 case forced in two first
shells (labeled ⋄). The insets show the phase-shift between the energy ΦE(ω) (a)
and energy-dissipation rate responses Φε(ω) (b), and the forcing modulation.

dissipation rate amplitudes Aε(ω), ωAε(ω). We notice that at high modu-
lation frequency ω the amplitude approaches zero, consistent with the ex-
pectation that the modulation of the forcing is not effective in this range.
More importantly, the energy-dissipation rate amplitude displays a strong
response maximum at the level of 85% compared to the amplitude of mod-
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ulation. The total mean energy dissipation T−1
∫ T
0 ε(ω, t)dt for each modu-

lation frequency ω is almost constant. It differs from the energy-input rate
εw = 0.15 at the level of 1% for most of the frequencies, reaching the max-
imum difference of 5% for the lowest simulated frequency, confirming good
numerical convergence. This is in agreement with boundary layer experi-
ments [96] where the time-averaged quantities are only slightly affected by
the imposed oscillations.

4.5 Conclusions

The direct numerical simulation of the response of turbulence to time-
modulated forcing confirms the existence of a response maximum. The
simulation findings are in general agreement with predictions based on
a mean-field theory [44]. The mean-field theory predicts the decrease of
the response amplitude proportional to ω−1 as the modulation frequency
is sufficiently large that was observed in the simulations as well. The re-
sponse maxima in the total energy and the Taylor-Reynolds number occur
at the forcing frequencies of the order of the inverse large-eddy turnover
time scale. The phase difference between the modulation of the forcing
and the conditionally averaged response displays a strong dependence on
the modulation frequency as well. The modulation frequency at which the
response maximum arises depends only weakly on the Reynolds number
but shows a dependence on the scales included in the forcing as well as on
the flow property that is considered. In general, if the particular quantity
of interest shows a stronger dependence on the smaller scales in a turbulent
flow, then the response maximum arises at a somewhat higher frequency.
These findings may be independently assessed in physical experiments, e.g.,
conducted in wind tunnels combined with the use of active grids cycled in
a periodic sequence [97].
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Chapter 5

Turbulence modification by

time-periodic forcing†

The response of turbulent flow to time-modulated forcing is studied by direct
numerical simulation of the Navier–Stokes equations. The forcing is mod-
ulated via periodic energy-input variations at a frequency ω. Harmonically
modulated forcing of the large scales is shown to yield a response maximum
at frequencies in the range of the inverse of the large-eddy turnover time,
as well as a characteristic rapid change of the phase-angle between forcing
and response. Harmonically modulated broadband forcing is also studied in
case a wide spectrum of length scales is forced simultaneously. If smaller
length-scales are also explicitly agitated by the forcing, the response maxi-
mum is found to occur at higher frequencies and to become less pronounced.
In case the explicitly forced spectrum is sufficiently wide, a response max-
imum was not observed. At high modulation frequencies the amplitude of
the kinetic energy response decreases as 1/ω, consistent with theoretical pre-
dictions. The amplitude response to intense pulses of energy injected via a
square-wave modulated forcing at the largest scales was also studied. This
forcing protocol induces a more complicated response structure that also dis-
plays a maximum in the kinetic energy amplitude response at a modulation
frequency comparable to the harmonically modulated case.

†“Turbulence modification by periodically modulated scale-dependent forcing” by
A. K. Kuczaj, B. J. Geurts, D. Lohse, and W. van de Water submitted to a special
issue of Computers & Fluids associated with Conference on Turbulence and Interactions
(TI2006) held in Porquerolles, France, May 29 - June 2, 2006 [62].
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5.1 Introduction

Forcing of turbulent flow has been applied since many years in computa-
tional models, primarily aimed at studying basic problems of turbulence
dynamics such as properties of inertial range scales, universality and in-
termittency [86, 8]. However, variations and modulations of the type of
forcing rarely been taken into account in modeling of turbulent flows that
are of more direct interest to industrial applications. Examples in which
part of the flow modeling may involve explicit forcing of a range of length
scales simultaneously are flow through a complex three-dimensional metal
foam to understand heat-transfer [11] or flow through fractal gaskets to in-
vestigate mixing enhancement [55]. These problems involve more elaborate
forcing protocols. It is the purpose of this paper to investigate the conse-
quences of flow agitation, with particular emphasis put on time-modulation
and broadband forcing.

Recently, turbulence driven by a time-periodic, i.e., harmonic energy-input
rate was theoretically analyzed [44, 45] and resonance maxima were pre-
dicted, based on mean-field theory and simulations involving the Gledzer-
Ohkitani-Yamada (GOY) model [4] and the reduced wave vector approxi-
mation (REWA) [40]. This resonance phenomenon was confirmed by direct
numerical simulations of the full Navier–Stokes equations [61].

On the experimental side, recent work concerning a time-periodic energy-
injection rate to a fluid in the von Kármán swirl geometry [98], or, concern-
ing flows that are periodically driven by two counter-rotating stirrers [15],
provides evidence that modulation in time of the external forcing can lead
to different degrees of turbulence responsiveness. The magnitude of the re-
sponse depends on the modulation frequency and can develop maxima that
may be relevant to technological processes, e.g., to control mixing efficiency.
Also windtunnel experiments [97] suggest a striking frequency dependency
of the responsiveness of the flow that appears connected directly to the
structure of turbulence. In these windtunnel experiments the modulation
of the forcing was introduced via an active grid placed upstream of the mea-
suring section. This active grid was cycled in a particular periodic sequence
that was repeated with frequency ω. Several aspects of the response of the
turbulent flow, such as the frequency dependence, were found to rely on the
particular sequence traversed by the active grid. This additional sensitivity
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to the spatial structure of the forcing represents a further complexity that
may be represented by introducing time-modulation to forcing in which a
range of flow scales is agitated simultaneously. This brings about an in-
terest in time-modulation of broadband forcing, which is central to this
paper.

These experiments further motivate the extension of existing large-scale
forcing strategies to also describe turbulent flows under the influence of
periodically driven forces. In this paper we report direct numerical simula-
tions of turbulent flow under the influence of periodically modulated forcing
and investigate the changes that occur in the location and magnitude of the
response maxima when forcing-specific parameters are varied. Specifically,
the emphasis is placed on (i) multiscale perturbation of a flow, investigat-
ing effects due to the spectral support of the forcing, (ii) the influence of
the modulation amplitude on the response and (iii) the robustness of the
response to variations in the forcing protocols.

We found that harmonically modulated forcing of the large scales yields a
response maximum at frequencies in the range of the inverse of the large-
eddy turnover time. Consistent with theoretical predictions, at high mod-
ulation frequencies the amplitude of the kinetic energy response decreases
as 1/ω. Near the maximal response a rapid change of the phase-angle
between forcing and response was observed. Explicit agitation of smaller
length scales causes that the response maximum shifts to higher frequencies
and becomes less pronounced. In case of sufficiently wide explicitly forced
spectrum, a response maximum was not observed. We also studied the
amplitude response to intense pulses of energy injected via a square-wave
modulated forcing at the largest scales. This forcing protocol induces a
more complicated response structure that also yields a maximum ampli-
tude response.

The organization of this paper is as follows. In Sec. 5.2 we briefly present
the computational flow model. The results are described and analyzed in
Sec. 5.3, discussing harmonically modulated large-scale forcing (see also
Ref. [61]) and small-scale forcing as well as the effect of square-wave mod-
ulation. The conclusions are given in Sec. 5.4.
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5.2 Computational flow model

The incompressible Navier–Stokes equations are solved numerically in a
periodic flow domain with a pseudo-spectral code [60]. We consider

(
∂t + νk2

)
uα(k, t) = Ψα(k, t) + Fα(k, t), (5.1)

with kinematic viscosity ν = Re−1, in terms of the Reynolds number Re,
and uα(k, t) the Fourier coefficient of the velocity field in the xα-direction,
at wave vector k (k = |k|) and time t. The nonlinear term Ψα incorporates
the incompressibility constraint [71]. Finally, Fα represents the forcing.

The agitation of the flow is achieved by introducing an explicit forcing
Fα(k, t). The specification of the forcing proceeds in two steps, first ad-
dressing the basic wave number dependent forcing fα and then describing
its temporal modulation to arrive at Fα.

The basic forcing fα is defined with reference to all modes in the band
Km,p (m ≤ p), which consists of p −m + 1 adjacent spherical shells Sn =
2π
Lb

(n − 1/2) < |k| ≤ 2π
Lb

(n + 1/2): m ≤ n ≤ p. Here, Lb is the box-size in
physical space. The basic forcing fα(k, t) [60] is given for all n ∈ [m, p] by

fα(k, t) =
(εw
M

) an

Pn

uα(k, t)

|u(k, t)|2
; k ∈ Sn, (5.2)

where εw is a constant energy-injection rate and M ≤ p −m + 1 denotes
the number of shells out of Km,p that are actually forced. An equal fraction
εw/M of the energy-input rate is allocated to each of the forced shells.
The number of modes in Sn is denoted by Pn and an = 1 in case the modes
in Sn are forced explicitly and 0 otherwise. Hence, the energy-input rate to
each of the modes in the same forced band Sn is identical.

In this paper we will consider forcing in the band K1,16 and distinguish
three cases:

(A) large-scale forcing only (M = 1; an = 0 except a1 = 1),

(B) two-shell forcing (M = 2; an = 0 except a1 = a2 = 1),

(C) five-shell forcing (M = 5; an = 0 except a1 = a2 = a4 = a8 = a16 = 1).



5.2. Computational flow model 97

The number of modes in the forced shells is given by P1 = 18, P2 = 62,
P4 = 210, P8 = 762 and P16 = 3338 respectively.
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Fig. 5.1: (a) Sinusoidal (dashed) and square-wave (solid) forcing protocols P with
amplitude AF . (b) Time-averaged energy spectrum with discrete unmodulated
forcing in five shells referred to as the broadband forcing case (C) within the K1,16

band.

The second step in specifying the forcing Fα(k, t) introduces periodic mod-
ulation through

Fα(k, t) = P(ωt)fα(k, t) =
(
1 +AF s(ωt)

)
fα(k, t), (5.3)

where AF is the amplitude of the forcing protocol P, ω the angular fre-
quency and s(ωt) the modulation, which is such that s(z+ 2π) = s(z). We
will consider two types of modulation, i.e., the sinusoidal wave: s(ωt) =
sin (ωt) and the square-wave consisting of square pulses: s(ωt) = sgn(sin(ωt)).
The modulated forcing corresponds to a total energy-input rate, which os-
cillates around εw with amplitude AF ,

TF (ω, t) =
∑

k

u∗α(k, t)Fα(k, t) = εw

(
1 +AF s(ωt)

)
, (5.4)

where (∗) denotes complex conjugate. The forcing protocols are schemati-
cally presented in Fig. 5.1(a).

In the sequel, the response of the turbulent flow to the class of explicit
forcing protocols [Eqs. (5.2) and 5.3)] will be investigated. We focus on



98 Chapter 5. Turbulence modification by time-periodic forcing

dependencies of turbulence properties on the modulation frequency ω, the
amplitude AF , the specific protocol s, and the spectral support of the forc-
ing (i.e., case (A), (B) or (C)). Particular attention will be given to the
kinetic energy and the energy-dissipation rate will be discussed in some
detail in the next section.

5.3 Periodic modulation

In this section we first describe the flow when subjected to harmonically
modulated forcing and discuss in some detail the method of data processing
(5.3.1). Then, in separate subsections we will address the effect of varia-
tions in forcing amplitude (5.3.2), the influence of variations in the spectral
support of the forcing (5.3.3) and the consequences of changes in the forcing
protocol (5.3.4).

5.3.1 Harmonically modulated forcing

In order to characterize the response to harmonically modulated forcing we
adopt, as point of reference, forced turbulence without time-modulation.
The computational box-size is taken as Lb = 1 and we use a Reynolds
number Re = 1061 as also adopted in Ref. [77, 60].

The energy-injection rate εw = 0.15 in cases (A) and (B) while εw =
0.45 was used in case (C). These energy-injection rates were selected to
obtain approximately comparable Taylor-Reynolds numbers, fluctuating
all roughly in the range 30–50 in each simulation. In order to measure
the amplitude of the response, numerical simulations in the frequency range
π/5 ≤ ω ≤ 80π were performed with time-modulated forcing at amplitudes
AF = 1/5, 1/2, and 1. As an illustration, the time-averaged kinetic en-
ergy spectrum obtained in the five-shell forced case (C) is displayed in
Fig. 5.1(b). A general compliance with the well-known −5/3 scaling may
be observed, next to characteristic localized peaks in the spectrum, asso-
ciated with the forced modes. We verified that using a resolution of 643

provides ample resolution of the small scales in this flow. Throughout this
paper simulations are such that for the most computationally demanding
modulation amplitudes and frequencies the kmaxη criterion does decrease
below 1.4 level.
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To extract the relevant average quantities from the simulations, an ensem-
ble of Nr = 30 statistically independent initial conditions, taken from the
unmodulated forced turbulence, and each separated by two eddy-turnover
times, was used. This ensemble of simulations was adopted to extract
the conditionally averaged signal at each forcing frequency. Simulations for
each frequency, and initial condition, were performed over a time extent of
four forcing periods T = 2π/ω with 320 monitoring points, i.e., 80 for each
period). Data were collected over the latter two forcing periods to average
the results over time and over realizations. The robustness of this proce-
dure was discussed in Ref. [61] in which also the number of 30 independent
realizations and the level of statistical convergence were further scrutinized.

To quantify the response of the total kinetic energy to time-modulated forc-
ing, we adopt the following procedure [61]. First, corresponding to a mod-
ulation frequency ω and the jth initial condition out of the Nr realizations,
we record the kinetic energy Ej(ω, t) and its time average Ej(ω). Sec-
ond, we build the normalized kinetic energy QE(ω, t) = 〈Ej(ω, t)/Ej(ω)〉Nr

where 〈·〉Nr denotes averaging over the Nr realizations taken from the
ensemble. Third, the Fourier transform (F), in which time t is trans-
formed into frequency f , is applied yielding a power amplitude spectrum
Q̂E(ω, f) = F

(
QE(ω, t) − 1

)
. Of particular importance to quantifying the

response maxima to time-modulated forcing are the maximum value AE(ω)
and phase-shift ΦE(ω) defined as:

AE(ω) = max
f
{|Q̂E(ω, f)|} ≡ |Q̂E(ω, fE(ω))|, (5.5)

ΦE(ω) = arctan
( Im(Q̂E(ω, fE(ω)))

Re(Q̂E(ω, fE(ω)))

)
. (5.6)

Here, we introduced fE(ω) as the frequency at which |Q̂E(ω, f)| attains its
maximum. A similar procedure is also applied to the energy-dissipation
rate ε(ω, t) yielding Aε(ω) and Φε(ω).

In Fig. 5.2 (see also Ref. [61]) the normalized energy QE(ω, t) and energy-
dissipation rate Qε(ω, t) are plotted for four different modulation frequen-
cies ω. For lower frequencies the energy response is able to adjust instan-
taneously to the modulation of the forcing. We observe small phase-shift
between the response and modulation. For higher frequencies the ampli-
tudes of the responses strongly decrease and the phase-shift with respect
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Fig. 5.2: The normalized energy QE(ω, t) (◦), and the energy-dissipation rate
Qε(ω, t) (⋄) obtained from the large-scale forcing of type (A) with amplitude AF =
1/2 at modulation frequency ω = 0.32π (a), ω = 0.56π (b), ω = 0.80π (c),
ω = 1.60π (d). In (a) we also illustrated the amplitudes AE(ω), Aε(ω) and phase-
shifts ΦE(ω), Φε(ω) relative to the forcing (dashed).

to the modulation becomes more pronounced. The response in the energy-
dissipation rate is larger for low frequencies than the response in the total
kinetic energy. The situation changes for higher modulation frequencies.
This behavior may be related to the amount of energy remaining in the
system for various forcing modulations. For high frequencies turbulence
does not detect the modulation, hence smaller portions of energy but larger
amount of them in the same time-frame travel to small scales where the
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dissipation plays a primary role. Further energy transfer investigations are
needed in order to explain this characteristic behavior. These can be per-
formed in similar fashion as in Ref. [75], when the induced pulses of energy
at the largest scales were tracked in time as they pass various length scales
in a similar way as Lagrangian particles.
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Fig. 5.3: Total kinetic energy amplitude response AE(ω) (a) and compensated
total kinetic energy amplitude response ωAE(ω) (b) for the large-scale forcing of
type (A) at three different amplitudes: AF = 1/5 (◦), AF = 1/2 (�), AF = 1 (△).

Moreover, the relatively large amplitude of forcing (AF ≥ 1/2) causes the
asymmetry in the amplitude response, because with the growing amplitude
of forcing turbulence almost exhibits a free decay period during the negative
phase of the modulation. This will be directly seen in subsection 5.3.4,
where we analyze the results of the flow modulation by the square-wave
pulses of injected energy.

5.3.2 Variation of the modulation amplitude

The influence of variations in the amplitude AF of the forcing-modulation
on the responsiveness of turbulent flow is discussed next. We turn to tur-
bulent flow that is forced at the largest scales only, i.e., adopt type (A)
modulation. The direct numerical simulation of time-modulated large-scale
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forcing confirms the existence of a response maximum at frequencies quite
close to the inverse of the large-eddy turnover time. This is illustrated in
Fig. 5.3 where we collected the amplitude response of the kinetic energy
AE(ω) obtained at different modulation strengths. The maximum in the
amplitude responses in Figs. 5.3(a) and (b) is observed at ω ≈ 1 where
we remark that the non-dimensionalization is such that the unit of time
corresponds to one large-eddy turnover time. We studied three amplitudes
of forcing AF = 1/5, 1/2, 1. In each of these cases, quite similar behavior of
the response can be observed. The maximal response is more pronounced
for the larger amplitude of forcing. At large modulation frequencies ω, we
observe a decrease in the responsiveness, which indicates that the turbu-
lence can not respond to fast modulation frequencies. At high modulation
frequencies the decay of AE(ω) is seen to be proportional to 1/ω, as pre-
dicted by the mean-field theory presented in Ref. [44].
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Fig. 5.4: Phase-shift between the energy ΦE(ω) and the forcing modulations for
the large-scale forcing (A) at three different modulation amplitudes: AF = 1/5 (◦),
AF = 1/2 (�), AF = 1 (△).

The phase difference between the forcing modulation and the conditionally
averaged total energy response is shown in Fig. 5.4. At low modulation
frequencies the phase difference is zero, indicating that the modulations
are instantaneously followed by the turbulent flow. We observe a strong
variation near the modulation frequency at which the flow is most respon-
sive. We notice that the amplitude AF of the forcing-modulation has no
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strong influence on the phase difference. At high modulation frequencies
the phase-difference approaches 90o.

In Fig. 5.5(a) we show the effect of variations in the amplitude AF of the
forcing-modulation on the compensated energy-dissipation rate amplitude
ωAε(ω). This quantity is accessible to direct physical experimentation.
We notice that at high modulation frequency ω the amplitude approaches
zero, consistent with the expectation that the modulation of the forcing
is not effective in this range. More importantly, the energy-dissipation
rate amplitude displays a strong response maximum at roughly the same
modulation frequency as observed for the kinetic energy response. The
effect of variations in AF on the phase difference Φε(ω) may be observed
in Fig. 5.5(b). We notice that the phase difference approaches 180o at high
ω, which is twice the value observed for the kinetic energy.
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Fig. 5.5: Response of compensated energy-dissipation rate amplitude ωAε(ω) (a)
and phase-shift between the energy-dissipation rate Φε(ω) and the forcing modu-
lations (b) for the large-scale forcing (A) at three different modulation amplitudes:
AF = 1/5 (◦), AF = 1/2 (�), AF = 1 (△).

5.3.3 Variation of the range of forced scales

Apart from the amplitude of the forcing modulation, the spectral support
of this modulation has a strong effect on the response of the turbulent
flow. We now consider this in more detail. We compare the results of
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type (A) and (B) forcing to the behavior seen in the five-shell broadband-
forced turbulence obtained with type (C) forcing. This effect may be seen
in Figs. 5.6(a) and (b) where the total kinetic energy response for the three
simulated forcing cases (A), (B) and (C) is shown. The turbulence response
changes compared to the large-scale forcing results (type (A)) if we also
incorporate forcing of some smaller scales in the second shell (type (B)).
In case (B) the maximum response in the compensated energy amplitude
is still clearly visible but it has become less pronounced. Moreover, the
maximal response is now observed at higher frequencies near ω ≈ 3.2.
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Fig. 5.6: Total kinetic energy amplitude response AE(ω) (a) and its compensated
value ωAE(ω) (b) for the large-scale forcing (A: ◦), two-shell forcing (B: �) and
five-shell forcing (C: ⋄).

The agitation of a larger number of small scales at the same total energy-
input rate εw appears to wash out a response maximum. Generally, the
forcing of these smaller scales leads to a more rapid decorrelation of the
large scales, which evidently diminishes the responsiveness of the turbulence
to external agitation. This effect is further pronounced in the broadband-
forced case (C) for which a characteristic response maximum can no longer
be discerned. Similar conclusions can be drawn for the energy-dissipation
rate. Further analysis of the dependence of the velocity correlation-time
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on the modulation frequency in the three cases (A), (B) and (C) will be
conducted to quantify these effects. This addresses aspects of the physical-
space effects of modulated forcing and will be published elsewhere.

5.3.4 Variation of the periodic forcing protocol

The dependence of the turbulence response on the specific shape of the
modulation protocol s(ωt) will be considered next. For that purpose we
investigate forcing that is modulated by a square-wave forcing protocol,
periodically kicked turbulence [66, 49] The square-wave forcing induces a
much more complicated response structure in comparison to the sinusoidal
forcing modulation used so far. However, several global properties of the
turbulence responsiveness were found to be quite insensitive to the forcing
protocol.
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Fig. 5.7: Kinetic energy (a) and energy-dissipation rate (b) amplitude response
of turbulence to square-wave large-scale forcing of type (A) simulations with am-
plitude AF = 1 for various modulation frequencies in the range ω/(2π) = 0.16−40.
The arrow denotes the direction of increasing frequency of modulation.

In Fig. 5.7 we plotted the kinetic energy and energy-dissipation rate re-
sponse for various frequencies of the square-wave forcing modulation. An
increase in the modulation frequency is marked by an arrow. The ap-
plication of the square-wave forcing at an amplitude AF = 1 causes an
energy-injection during half the period, and no forcing during the second
half. During this second stage, turbulence freely decays. At low frequencies
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ω the pulsed injection of energy causes an overshoot in the response. After-
wards the turbulence stays approximately in a quasi-stationary state until
the end of the energy-injection period, when an abrupt cutoff of energy
supply leads to its free decay. The overall amplitude response of the kinetic
energy and energy-dissipation rate decreases with increasing frequency. We
also observe a stronger and less abrupt response in the energy-dissipation
rate compared to the response in the kinetic energy particularly at high ω.

Before turning to the frequency-dependence of the amplitude response, we
first assess the sensitivity of the results on the averaging procedure. For
this purpose we started with two sets of simulations. In the first case,
the amplitude of the forcing was positive AF = 1, while in the second we
reversed the situation applying a negative amplitude AF = −1 initially.
This means that we start either with a sharp pulse of energy-injection or
with its free decay. The same set of simulations was performed during four
periods of modulation and data were also averaged over 30 independent
realizations. If we neglect the first period and shift the response data
in the time domain by half the period T , the differences are negligible.
This can be seen in Fig. 5.8, where we plotted the kinetic energy and the
energy-dissipation rate amplitude responses for selected frequencies. The
kinetic energy (◦,�) and energy-dissipation rate (⋄,△) responses are almost
indistinguishable for these two cases. This further supports the correctness
of the averaging procedure employed.

The frequency dependence of the response in the kinetic energy and the
energy-dissipation rate, following from a square-wave modulation protocol,
are shown in Fig. 5.9. Here, we restrict the analysis of the response to
the lowest dominant Fourier coefficient in the response signal. We observe
a characteristic response maximum in the compensated energy response
plot, Fig. 5.9. Similar as for the sinusoidal forcing-modulation a phase-shift
arises between the forcing and the maximal energy and energy-dissipation
rate responses. The phase-shift goes to 90o for the energy response and
to 180o for the energy-dissipation rate response and varies rapidly at the
frequency where the maximal responses exist.
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Fig. 5.8: The normalized energy QE(ω, t) (◦, �), and the energy-dissipation
rate Qε(ω, t) (⋄,△) obtained from the square-wave large-scale forcing of type (A)
simulations with amplitude AF = 1 at modulation frequency ω = 0.32π (a),
ω = 0.52π (b), ω = 0.64π (c), ω = 0.96π (d). The amplitudes AE(ω), Aε(ω) and
phase-shifts ΦE(ω), Φε(ω) of the forcing (dashed) are shown. The results for an
initial kick (◦,⋄) are indistinguishable from those started with an initial decay and
shifted by half the period T (�,△).

5.4 Conclusions

In this paper we examined turbulence driven by a periodically modulated
forcing. We concentrated on the effects of varying the intensity of forcing,
the spectral support of the explicitly agitated scales and the forcing proto-
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Fig. 5.9: Total kinetic energy amplitude response AE(ω) (a) and its compensated
value ωAE(ω) (b) for the large-scale forcing (A) with the square-wave modulation
protocol.

col. The amplitude response was observed for the kinetic energy and the
energy-dissipation rate. The simulations confirm the existence of a charac-
teristic time-scale in turbulent flow, at which the amplitude response has a
maximum. This time-scale is connected to the larger scales in the flow and
is on the order of the eddy-turnover time.

The response to pulses of energy injected with a square-wave forcing-protocol
was also determined. This problem was considered earlier in Ref. [75] where
it was shown that an initial pulse of kinetic energy injected at the large
scales of the flow propagates in time to the smaller scales as if it were a
fluid particle. It was found also that pulses of energy at the largest scales
correlate on average better with pulses at smaller scales only after allowing
the cascade to proceed for some time. The results in Ref. [75] were lim-
ited to qualitative observations due to the large statistical fluctuations in
the data. These qualitative findings could be confirmed in our simulations,
where we observe a maximal response of the turbulence at a characteris-
tic time of the order of the eddy-turnover time. In our simulations the
statistical fluctuations in the data could be removed by the application of
ensemble averaging over a large number of independent realizations.
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Future analysis of the energy transfer through the scales present in the flow
will be performed. This may directly measure the characteristic cascading
time associated with the travel of energy down the cascade. Another aspect
worthwhile to consider in future work is the possible existence of structures
at various scales of motions. This allows addressing the question of possible
resonances connected with the presence of specific structures perturbed
explicitly in the flow.
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Chapter 6

Concluding remarks and outlook

General context. The basic aim of this thesis was to numerically in-
vestigate the way in which various scales of motion in turbulence interact
and how this may be modulated relative to the natural cascading process,
through explicit external forcing. One way to observe these interactions
is to disturb the processes that govern them, i.e., to influence the energy
transfer between the largest and the smallest scales in a flow. We ap-
proached this goal by studying the response of turbulence to forcing that is
applied not only at the classically studied largest scales, but also at a range
of smaller inertial scales. This allows investigating the energy dynamics
in broadband-forced turbulence. The application of broadband forcing was
shown to yield controlled non-Kolmogorov turbulence that displays a strong
modification of the energy spectra. Similar situations can be observed in
many flows in nature. They do not obey the classical Kolmogorov picture
of turbulence because of interactions with complex boundaries. Perturba-
tion of the classical picture of the Kolmogorov cascade served as the main
motivation of this thesis. Another motivation was to explore periodically
forced flows in the context of large-scale and broadband forcing. Such pe-
riodic forcing plays a primary role in the atmosphere and oceans due to
the Earth’s rotation, heating by the Sun or gravitation of the Moon. The
atmosphere and the upper layer of oceans are highly turbulent. Hence,
periodic forcing is an important issue in turbulence.
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Mixing in manipulated turbulence. We investigated explicit forcing
methods as a modeling framework that incorporates the effect of agitation
of small scales caused by geometrically complex objects such as metal foams.
We have shown that with a relatively simple forcing model basic properties
of complex flows can be captured such as spectral by-pass arising from
the simultaneous forcing of a range of scales in a flow. The ultimate goal
would be to find the relation between real objects seen in nature, their
mathematical representation and the corresponding forcing.

We paid attention to the relevance of spectral space forcing for physical
space mixing characteristics. We performed numerical simulations of the
dispersion of a passive scalar field in a turbulent flow driven by broadband
forcing. We quantified with a level set integration method the mixing effi-
ciency. We found that broadband forcing causes additional production of
smaller scales in the flow that are directly responsible for the localized en-
hancement of the wrinkling of a level set of the passive scalar. In contrast,
the surface area of a level set of the tracer is found to be mainly governed
by convective sweeping by larger scales in the flow. A direct influence of
broadband forcing on the increase of mixing efficiency was found in the
cumulative surface area or wrinkling, while the instantaneous effect was
found to be maximal in classical Kolmogorov large-scale forced turbulence.

Energy dynamics in broadband-forced turbulence. For inertial-
range scales deterministic broadband forcing introduces an explicit energy
injection term. We varied the spectral support and strength of this forcing
to investigate the modulation of the turbulence that develops. We ob-
served an abrupt transfer of energy to smaller scales similar as seen in case
of flows through geometrically complicated structures. In such cases, flow
that passes a complex obstacle is immediately disturbed at various small
scales. We studied in detail the energy dynamics of broadband-forced tur-
bulence. Forcing methods agitating the flow in a wide range of scales induce
significant differences in the developing flow. We found that forcing affects
the intensity of the developing turbulence by enhancing the nonlocal energy
cascade towards smaller scales. This leads to modifications in the energy
transfer spectrum and the energy distribution among scales.
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Response maxima in periodically forced turbulence. We performed
simulations in which the strength of large-scale forcing was periodically
varied in time. Although such simulations are far from the complexity
of real flows seen in nature, the main goal was to verify the existence of
response maxima in turbulence. Harmonically modulated forcing of the
large scales was shown to yield a response maximum at frequencies in the
range of the inverse of the large-eddy turnover time. At high modulation
frequencies the amplitude of the kinetic energy response decreases as the
inverse of the driving frequency, consistent with theoretical predictions.
We also observed a characteristic rapid change of the phase-angle between
forcing and response near ‘resonance’.

Turbulence modification by time-periodic forcing. We extended
the numerical approach used for studying the response of turbulent flow
to large-scale, periodically varied forcing. In particular, we allowed such
time-varying forcing at various (discrete) scales, varied the amplitudes and
the time-periodic protocols. Harmonically modulated broadband forcing,
studied in case a wide spectrum of length-scales is simultaneously forced
also displays a response maximum. This occurs at higher frequencies and
is less pronounced compared to the case of large-scale forcing alone. The
maximum is not observed in case the explicitly forced spectrum is suffi-
ciently wide. We also studied the amplitude response to intense pulses of
energy injected via a square-wave modulated forcing. This forcing protocol
induces a more complicated response structure. A maximum in the kinetic
energy amplitude response at a modulation frequency comparable to the
harmonically modulated case is also observed in this case.

Outlook. Although numerical simulations of most flows seen in nature are
computationally not yet feasible, the big advantage of computational fluid
dynamics is the ability to extract and separate various phenomena. The
presented broadband-forced turbulence and harmonically forced turbulence
are two examples of such studies.

Future development of the broadband forcing strategy should probably con-
centrate on two areas. Namely, further numerical investigation of the forc-
ing methods with their connections to real-life objects and studies of spa-
tially localized forcing in turbulence. The spatially localized forcing allows
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directly to localize perturbations in the region occupied by the actual ob-
ject. This way forcing can be used as part of the computational modeling.
The mechanisms responsible for a spectral shortcut is another important
issue worth further numerical investigations.

Various forcing protocols applied in harmonically forced turbulence may di-
rectly enhance the turbulence intensity and physical space dispersive trans-
port that is relevant in many technological processes. The examination of
the proposed broadband and harmonically modulated turbulence at vari-
ous Reynolds and Schmidt numbers would be of considerable interest. Most
probably the harmonically forced turbulence induces some geometrical flow
structuring that can persist for longer time in a specific range of frequencies.
These aspects may be directly investigated by looking at the correlation
coefficients between various quantities in harmonically forced flows such as
energy-input and energy-dissipation rate.

The effect of forcing may be examined by direct splitting of velocity deriva-
tives into vorticity and strain components. This is the basis for the eval-
uation of so-called geometrical statistics. Preliminary studies in this di-
rection show that broadband forcing influences classical large-scale forced
turbulence by diminishing the importance of the self amplification process
between vorticity and strain. In turn, this may help to understand the
self-amplification mechanism that enhances velocity gradients and plays an
important role in the nonlinear dynamics of turbulence. Moreover, these
investigations may help to connect the forcing methods with real-life ob-
jects.

As a final remark, there is one unifying concept throughout this work re-
gardless what type of forced flow we analyze. The study demonstrated
the utility of forcing methods to represent complicated turbulent flows that
usually are seen in nature. The content of this dissertation is a compu-
tational attempt to shed some more light on the last unsolved problem of
classical physics - turbulence.
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Beńard flow. Phys. Rev. A, 46(2):903–917, 1992.

[39] S. Grossmann and D. Lohse. Intermittency in the Navier–Stokes
dynamics. Z. Phys. B, 89:11–19, 1992.

[40] S. Grossmann and D. Lohse. Scale resolved intermittency in turbu-
lence. Phys. Fluids, 6:611, 1994.

[41] S. Grossmann and D. Lohse. Universality in fully developed turbu-
lence. Phys. Rev. E, 50:2784, 1994.

[42] HDF5 Group. HDF5 User’s Guide. National Center for
Supercomputing Applications (NCSA), University of Illinois,
http://www.hdfgroup.org.

[43] F. Hayot and C. Jayaprakash. From scaling to multiscaling in the
stochastic Burgers equation. Phys. Rev. E, 56(4):4259–4262, 1997.

[44] A. v.d. Heydt, S. Grossmann, and D. Lohse. Response maxima in
modulated turbulence. Phys. Rev. E, 67:046308, 2003.

http://www.fftw.org
http://techpubs.sgi.com
http://www.hdfgroup.org


119

[45] A. v.d. Heydt, S. Grossmann, and D. Lohse. Response maxima
in modulated turbulence. II. Numerical simulations. Phys. Rev. E,
68:066302, 2003.

[46] J. O. Hinze. Turbulence: An Introduction to its Mechanism and The-
ory. New York, McGraw-Hill, 1975.

[47] D. D. Holm. Taylor’s hypothesis, Hamilton’s principle, and the
LANS-α model for computing turbulence. Los Alamos Science, 29,
2005.

[48] D. D. Holm, Ch. Jeffery, S. Kurien, D. Livescu, M. A. Taylor, and
B. A. Wingate. The LANS-α model for computing turbulence - ori-
gins, results, and open problems. Los Alamos Science, 29, 2005.

[49] J.-O. Hooghoudt, D. Lohse, and F. Toschi. Decaying and kicked
turbulence in a shell model. Phys. Fluids, 13(7):2013–2018, 2001.

[50] T. Ishihara and Y. Kaneda. High resolution DNS of incompressible
homogeneous forced turbulence - time dependence of statistics. In
Y. Kaneda and T. Gotoh, editors, Statistical Theories and Computa-
tional Approaches to Turbulence. Springer, 2003.

[51] J. Jimenez. Turbulent flow over rough walls. Ann. Rev. Fluid Mech.,
36:173–196, 2004.

[52] J. Jimenez, A. A. Wray, P. G. Saffman, and R. S. Rogallo. The
structure of intense vorticity in isotropic turbulence. J. Fluid Mech.,
255:65–90, 1993.

[53] L. Kadanoff, D. Lohse, J. Wang, and R. Benzi. Scaling and dissipation
in the goy shell model. Phys. Fluids, 7:617–629, 1995.

[54] Y. Kaneda, T. Ishihara, M. Yokokawa, K. Itakura, and A. Uno. En-
ergy dissipation rate and energy spectrum in high resolution direct
numerical simulations of turbulence in a periodic box. Phys. Fluids,
15(2):21–24, 2003.

[55] M. Kearney. Control of fluid dynamics with engineered fractals - ad-
sorption process applications. Chem. Eng. Comm., 173:43–52, 1999.



120 Bibliography

[56] R. M. Kerr. Higher-order derivative correlations and the alignment
of small-scale structures in isotropic numerical turbulence. J. Fluid
Mech., 153:31–58, 1985.

[57] R. M. Kerr. Velocity, scalar and transfer spectra in numerical turbu-
lence. J. Fluid Mech., 211:309–332, 1990.

[58] A. N. Kolmogorov. The local structure of turbulence in incompress-
ible viscous fluids at very large Reynolds numbers. C.R. Acad. Sci.
URSS, 30:301–305, 1941.

[59] A. N. Kolmogorov. A refinement of previous hypothesis concerning
the local structure of turbulence in a viscous incompressible fluid at
high Reynolds number. J. Fluid Mech., 13:82–85, 1962.

[60] A. K. Kuczaj and B. J. Geurts. Mixing in manipulated turbulence.
J. Turbul., to appear.

[61] A. K. Kuczaj, B. J. Geurts, and D. Lohse. Response maxima in
time-modulated turbulence: Direct Numerical Simulations. Euro-
phys. Lett., 73(6):851–857, 2006.

[62] A. K. Kuczaj, B. J. Geurts, D. Lohse, and W. v.d. Water. Turbu-
lence modification by periodically modulated scale-dependent forcing.
Comput. Fluids, submitted.

[63] A. K. Kuczaj, B. J. Geurts, and W. D. McComb. Nonlocal modu-
lation of energy cascade in broadband-forced turbulence. Phys. Rev.
E, 74:016306, 2006.

[64] S. Kurien and K. R. Sreenivasan. Anisotropic scaling contributions to
high-order structure functions in high-Reynolds-number turbulence.
Phys. Rev. E, 62(2):2206–2212, 2000.

[65] F. Li, L. Lefferts, and T. H. v.d. Meer. Study on heat transfer en-
hancement by metallic foams with carbon nano fibers (CNFs). In
Proc. 6th World Conference on Experimental Heat Transfer, Fluid
Mechanics, and Thermodynamics, Matsushima, Japan, April 2005.

[66] D. Lohse. Periodically kicked turbulence. Phys. Rev. E, 62:4946,
2000.



121

[67] L. Machiels. Predictability of small-scale motion in isotropic fluid
turbulence. Phys. Rev. Lett., 79(18):3411–3414, 1997.

[68] V.G. Maz’ja. Sobolev spaces. Springer Verlag – Berling, 1985.

[69] B. Mazzi, F. Okkels, and J. C. Vassilicos. A shell-model approach to
fractal-induced turbulence. Eur. Phys. J. B, 28:243–251, 2002.

[70] B. Mazzi and J. C. Vassilicos. Fractal generated turbulence. J. Fluid
Mech., 502:65–87, 2004.

[71] W. D. McComb. The Physics of Fluid Turbulence. Oxford University
Press, 1990.

[72] W. D. McComb and K. T. J. Chan. Drag reduction in fibre suspen-
sion. Nature, 292:520–522, 1981.

[73] W. D. McComb and K. T. J. Chan. Laser-Doppler anemometer mea-
surements of the turbulent structure in drag-reducing fibre suspen-
sions. J. Fluid Mech., 152:455–478, 1985.

[74] W. D. McComb, A. Hunter, and C. Johnston. Conditional mode-
elimination and the subgrid-modeling problem for isotropic turbu-
lence. Phys. Fluids, 13(7):2030–2044, 2001.

[75] C. Menevau, T. S. Lund, and J. Chasnov. On the local nature of the
energy cascade. In Proceedings of the Summer Program - Studying
Turbulence Using Numerical Simulation Databases – IV. Center for
Turbulence Research (CTR), November 1992.

[76] J. Meyers. Accuracy of Large-Eddy Simulation strategies. PhD thesis,
Katholieke Universiteit Leuven, 2004.

[77] J. Meyers, B. J. Geurts, and M. Baelmans. Database analysis of
errors in large-eddy simulation. Phys. Fluids, 15(9):2740–2755, 2003.

[78] A. Misra and D. I. Pullin. A vortex-based subgrid stress model for
large-eddy simulation. Phys. Fluids, 9(7):2443–2454, 1997.

[79] D. Mitra, J. Bec, R. Pandit, and U. Frisch. Is multiscaling an arti-
fact in the stochastically forced Burgers equation? Phys. Rev. Lett.,
94:194501, 2005.



122 Bibliography

[80] K. Mohseni, B. Kosovic, S. Shkoller, and J. E. Marsden. Numerical
simulations of the Lagrangian Averaged Navier-Stokes equations for
homogeneous isotropic turbulence. Phys. Fluids, 15(2):524–544, 2003.

[81] P. Moin and T. Bewley. Feedback control of turbulence. Appl. Mech.
Rev., 47:S3, 1994.

[82] P. Moin and J. Kim. Tackling turbulence with supercomputers. Sci-
entific American Magazine (SIAM), January 1997.

[83] MPI. Message Passing Interface. http://www.mpi-forum.org.

[84] K. Ohkitani and S. Kida. Triad interactions in a forced turbulence.
Phys. Fluids A, 4(4):794–802, 1992.

[85] M. R. Overholt and S. B. Pope. A deterministic forcing scheme for
direct numerical simulations of turbulence. Comput. Fluids, 27(1):11–
28, 1998.

[86] S. B. Pope. Turbulent Flows. Cambridge University Press, 2000.

[87] A. Pouquet, U. Frisch, and J. P. Chollet. Turbulence with a spectral
gap. Phys. Fluids, 26(4):877–880, 1983.

[88] R. S. Rogallo. An ILLIAC program for the numerical simulation of
homogeneous incompressible turbulence. Technical Report NASA-
TM-73203, NASA, 1977.

[89] R. S. Rogallo. Numerical experiments in homogeneous turbulence.
Technical Report NASA-TM-81315, NASA, 1981.

[90] A. Sain, Manu, and R. Pandit. Turbulence and multiscaling in
the randomly forced Navier–Stokes equation. Phys. Rev. Lett.,
81(20):4377–4380, 1998.

[91] SARA. Computing and Networking Services. http://www.sara.nl.

[92] X. Shen and Z. Warhaft. The anisotropy of the small scale structure
in high Reynolds number (Rλ = 1000) turbulent shear flow. Phys.
Fluids, 12(11):2976–2989, 2000.

http://www.mpi-forum.org
http://www.sara.nl


123

[93] E. D. Siggia. Numerical study of small-scale intermittency in three-
dimensional turbulence. J. Fluid Mech., 107:375–406, 1981.

[94] E. D. Siggia and G. S. Patterson. Intermittency effects in a numer-
ical simulation of stationary three-dimensional turbulence. J. Fluid
Mech., 86:567, 1978.

[95] Y. Suzuki and Y. Nagano. Modification of turbulent heli-
cal/nonhelical flows with small-scale energy input. Phys. Fluids,
11(11):3499–3511, 1999.

[96] S. F. Tardu, G. Binder, and R. F. Blackwelder. Turbulent channel flow
with large-amplitude velocity oscillations. J. Fluid Mech., 267:109–
151, 1994.

[97] C. Tipton and W. v.d. Water. Modulated turbulence. Phys. Rev.
Lett., page submitted, 2006.

[98] J. H. Titon and O. Cadot. The statistics of power injected in a closed
turbulent flow: Constant torque forcing versus constant velocity forc-
ing. Phys. Fluids, 15(3):625–640, 2003.

[99] A. A. Townsend. The Structure of Turbulent Shear Flows. Cambridge
Univ. Press, 1976.

[100] A. Tsinober. An Informal Introduction to Turbulence. Kluwer, 2002.

[101] A. Vincent and M. Meneguzzi. The spatial structure and statisti-
cal properties of homogeneous turbulence. J. Fluid Mech., 225:1–20,
1991.

[102] F. Waleffe. The nature of triad interactions in homogenous turbu-
lence. Phys. Fluids A, 4(2):350–363, 1992.

[103] L. P. Wang, S. Chen, J. G. Brasseur, and J. C. Wyngaard. Exam-
ination of hypotheses in the Kolmogorov refined turbulence theory
through high-resolution simulations. Part 1. Velocity field. J. Fluid
Mech., 309:113–156, 1996.

[104] T. Watanabe and T. Gotoh. Statistics of a passive scalar in homoge-
neous turbulence. New J. Phys., 6(40):1–36, 2004.



124

[105] P. Wesseling. An introduction to multigrid methods. Wiley, New York,
1992.

[106] S. Whitaker. The Forchheimer equation: a theoretical development.
Transp. Porous Media, 25:27–61, 1996.

[107] Y. Yamazaki, T. Ishihara, and Y. Kaneda. Effects of wavenumber
truncation on high-resolution direct numerical simulation of turbu-
lence. J. Phys. Soc. Jpn., 71(3):777–781, 2002.

[108] P. K. Yeung and J. G. Brasseur. The response of isotropic turbulence
to isotropic and anisotropic forcing at the large scales. Phys. Fluids
A, 3(5):884–897, 1991.

[109] P. K. Yeung, J. G. Brasseur, and Q. Wang. Dynamics of direct
large-small scale couplings in coherently forced turbulence: concur-
rent physical- and Fourier-space views. J. Fluid Mech., 283:43–95,
1995.

[110] A. J. Young. Investigation of Renormalization Group Methods for the
Numerical Simulation of Isotropic Turbulence. Phd thesis, University
of Edinburgh, 1999.

[111] Y. Zhou. Degrees of locality of energy transfer in the inertial range.
Phys. Fluids A, 5(5):1092–1094, 1993.

[112] Y. Zhou. Interacting scales and energy transfer in isotropic turbu-
lence. Phys. Fluids A, 5(10):2511–2524, 1993.

[113] Y. Zhou and Ch. G. Speziale. Advances in the fundamental aspects of
turbulence: Energy transfer, interacting scales, and self-preservation
in isotropic decay. Appl. Mech. Rev., 51(4):267–301, 1998.

[114] Y. Zhou, P. K. Yeung, and J. G. Brasseur. Scale disparity and
spectral transfer in anisotropic numerical turbulence. Phys. Rev. E,
53(1):1261–1264, 1996.



Summary

This thesis is devoted to turbulent mixing. Various flow problems arising in
science and technology are intimately connected to properties of turbulent
transport. Improvements and control of mixing efficiency rely directly on
the understanding of turbulence phenomena. From the mathematical point
of view, turbulence is governed by the Navier–Stokes equations. The con-
vective nonlinearity in these equations induces an interaction between a
wide range of scales in a flow. In addition, the dissipation term acts mainly
on the smallest flow scales, characterized by the fluid viscosity. In the
absence of external forces these two terms fully dictate the dynamics of
decaying turbulence. In numerical studies of turbulence dynamics one usu-
ally incorporates an external forcing to supply energy to the largest flow
scales. Correspondingly, we observe an average energy cascading process
from the largest to the smallest scales that is well depicted by the so-called
Kolmogorov K41 theory.

Actual flows seen in nature are often influenced by boundary conditions,
e.g., due to a complex shape of the flow domain such as a forest canopy.
Such flows do not follow the K41 predictions. This intriguing fact di-
rectly affects the turbulent mixing and motivated the research presented
in this thesis. Throughout, we focus on numerical studies of controlled
non-Kolmogorov turbulence. We concentrated on the canonical problem of
flow in a cubic box with periodic conditions. The perturbations arising from
flow through and along complex boundaries are represented by broadband
forcing. Apart from large-scale agitation of the flow to supply most of the
energy, the forcing is allowed to simultaneously act in a broader range of
scales, thereby explicitly disturbing the K41 energy cascading process. To
study different variants of flow agitation we developed a 3D parallel (MPI)
simulation code based on the incompressible Navier–Stokes equations.

We interpreted broadband forcing methods as part of the modeling of flow
along complex boundaries. The consequences of adopting different ranges
and strengths of externally forced scales were investigated, both in terms
of the quality of mixing of embedded passive scalar fields in physical space
(Chapter 2) as well as in terms of alterations in the spectral space triadic
interactions (Chapter 3). Arising from small-scale forcing, we observed a
characteristic depletion in the energy spectrum at part of the inerital scales.
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This corresponds to immediate transfer of the energy to smaller scales as
opposed to gradual ‘cascading’. A similar “spectral by-pass” phenomenon
was observed in flow over canopies. The broadband forcing was found to
enhance the overall (time-integrated) mixing efficiency measured in terms
of surface area and wrinkling of level sets of passive scalar fields, in a
range of Reynolds and Schmidt numbers. The instantaneous mixing was
found to reach highest levels for the classical Kolmogorov large-scale forced
turbulence. However, control may be obtained over the time-scale at which
maximal mixing is achieved and over the accumulated level of mixing.

In nature, flows are often modulated by periodic forcing. This arises, for ex-
ample, in flows that are influenced by the periodic cycles due to the Earth’s
rotation and heating from the Sun. This motivated to investigate turbu-
lent flows under the influence of periodically modulated large-scale forcing.
Periodic agitation of turbulent flows was recently studied experimentally,
e.g., in forced swirling flow and in windtunnels with periodically cycled ac-
tive grids. These studies suggest the existence of response maxima of the
turbulence at frequencies on the order of the inverse of the eddy-turnover
time. This was also predicted theoretically using a mean-field approach.
Based on full-scale direct numerical simulations we confirmed the existence
of response maxima in periodically agitated turbulence (Chapter 4). We
also conducted a comprehensive parameter study and investigated the re-
sponse of turbulent flow to time-modulated forcing at various length scales,
forcing strengths and forcing protocols (Chapter 5).

The numerical investigation of forcing strategies has established the strong
external influence that may be exerted on the turbulent cascading process.
This is directly connected to generic control over turbulent dispersion. The
application-goal of future studies could be directed towards the explicit con-
nection of forcing strategies to real-life stirrers and agitation protocols. This
would connect controlled turbulent transport to a detailed understanding
of the spectral space interactions among the relevant dynamic flow scales,
creating a direct connection between better mixing, improved heat-transfer
and better insight in turbulence.



Samenvatting

Dit proefschrift is gewijd aan turbulente menging. Diverse stromingsprob-
lemen uit de natuur en techniek zijn nauw verbonden met eigenschappen
van turbulent transport. Mogelijkheden tot verbetering van en controle
over de meng-efficiëntie hangen direct samen met het begrip van turbulente
fenomenen. Vanuit wiskundig oogpunt bezien wordt turbulentie beschreven
door de Navier–Stokes vergelijkingen. De convectieve niet-lineariteit in
deze vergelijkingen induceert een interactie tussen een breed scala aan
lengteschalen in een stroming. Daarnaast oefent de dissipatieve term zijn
invloed vooral uit op de kleinste lengteschalen, gekenmerkt door de vis-
cositeit. Bij afwezigheid van externe krachten dicteren deze twee termen de
dynamica van uitdempende turbulentie volledig. In numerieke simulaties
van turbulentie wordt vaak een externe aandrijving meegenomen om zo en-
ergie aan de grootste lengteschalen in een stroming toe te voeren. Hiermee
samenhangend kan men dan een gemiddelde energie-cascade observeren van
de grootste naar de kleinste lengteschalen die goed wordt beschreven door
de zogenoemde Kolmogorov K41 theorie.

Daadwerkelijke stromingen zoals in de natuur voorkomen worden vaak sterk
bëınvloed door randcondities, bijv., doordat de stroming in een domein met
complexe vorm plaastvindt zoals het bladerdak van een bos. Dergelijke stro-
mingen volgen de K41 theorie niet. Dit intrigerende feit heeft ook directe
gevolgen voor turbulente menging en motiveerde het onderzoek dat in dit
proefschrift is beschreven. We richten ons daarbij op numerieke studies
van gecontrolleerde niet-Kolmogorov turbulentie en concentreren ons met
name op het kanonieke probleem van stroming in een kubisch rekendomein
met periodieke condities. De verstoringen die ontstaan doordat de stro-
ming door en langs complexe randen plaatsvindt wordt gerepresenteerd
door een ‘breedband aandrijving’. Behalve de grote-schaal aandrijving van
de stroming, waarmee het grootste deel van de energie wordt toegevoerd,
staan we hierbij ook een gelijktijdige aandrijving van een scala aan kleinere
lengtschalen toe, waarmee we expliciet het K41 energie-cascade proces
modificeren. Om de verschillende varianten van stromings-aandrijving te
kunnen bestuderen is een 3D parallelle (MPI) simulatie-code ontwikkeld,
gebaseerd op de incompressibele Navier–Stokes vergelijkingen.
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We hebben de breedband aandrijvings-methodes gëınterpreteerd als on-
derdeel van de modellering van stroming langs complexe randen. De conse-
quenties van het aandrijven van verschillende lengteschalen, met verschil-
lende amplitudes, zijn onderzocht, zowel wat betreft de kwaliteit van de
menging van passieve scalaire velden in de fysische ruimte (Hoofdstuk 2) als
ook in termen van veranderingen in de triadische interacties in de spectrale
ruimte (Hoofdstuk 3). Als gevolg van de verstoring van de kleine schalen
werd een karakteristieke afname in het energie-spectrum waargenomen in
een deel van de inertiële schalen. Dit hangt samen met de directe overdracht
van energie naar de kleinere schalen, in tegenstelling tot een meer gradu-
ele cascade van energie. Een vergelijkbaar “spectraal by-pass” fenomeen is
waargenomen in de stroming over bosgebieden. De breedband aandrijving
leidt er toe dat de (tijds-gemiddelde) meng-efficiëntie toeneemt, gemeten
in termen van het oppervlakte en de ‘rimpeling’ van iso-vlakken van de
passieve scalaire velden, in een gebied van Reynolds en Schmidt getallen.
De instantane menging was maximaal voor de klassieke Kolmogorov aange-
dreven turbulentie. Echter, controle kan worden verkregen over de tijd-
schaal waarop maximale menging kan worden bereikt en de geaccumuleerde
menging.

In de natuur worden stromingen vaak gemoduleerd door een periodieke aan-
drijving. Dit komt bijvoorbeeld voor in stromingen die worden bëınvloed
door de periodieke cycli tengevolge van de rotatie van de Aarde en de
opwarming door de Zon. Dit motiveerde een onderzoek naar de invloed
van periodiek gemoduleerde grote-schaal aandrijving. Dergelijke periodieke
aandrijving is recent experimenteel onderzocht, bijv., in aangedreven ‘werve-
lende’ stroming en in een windtunnel met periodiek aangedreven actieve
roosters. Deze studies suggereren het bestaan van maxima in de turbulentie-
respons, bij frequenties van de orde van de inverse ‘eddy-turnover’ tijd. Dit
is ook theoretisch voorspeld in een gemiddeld-veld aanpak. Gebaseerd op
directe numerieke simulaties hebben we het bestaan van dergelijke respons
maxima in periodiek aangedreven stromingen kunnen bevestigen (Hoofd-
stuk 4). We hebben daarnaast een omvattende studie verricht naar de re-
spons van turbulente stroming op tijds-gemoduleerde gelijktijdige aandrij-
ving van diverse lengte-schalen, bij verschillende aandrijf-amplitudes en
aandrijf protocollen (Hoofdstuk 5).
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Het numerieke onderzoek naar turbulente aandrijf-strategieën heeft de sterke
externe bëınvloedbaarheid van het energie-cascade proces aangetoond. Dit
is direct verbonden met generieke controle van turbulente dispersie. Toekom-
stig toegepast onderzoek zou zich met name kunnen richten op de expliciete
relatie tussen aandrijf-strategie en de daadwerkelijke roer-mechanismen en
protocollen die worden ingezet. Dit zou gecontroleerd turbulent transport
direct koppelen aan een gedetailleerd begrip van de interacties tussen de
diverse relevante stromingsschalen en daarmee een verbinding leggen tussen
betere menging, betere warmteoverdracht en een beter begrip van turbu-
lentie.
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